Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bcl6 gene sculpts helper T cell to boost antibody production

27.07.2009
Tfh cells work in structures that are hotbeds for B cell genetic mutation

Expression of a single gene programs an immune system helper T cell that fuels rapid growth and diversification of antibodies in a cellular structure implicated in autoimmune diseases and development of B cell lymphoma, scientists at The University of Texas M. D. Anderson Cancer Center reported today in Science Express, the advance online publication of the journal Science.

The gene is Bcl6, which the team found plays the crucial role in differentiating a naïve T cell into a T follicular helper cell (Tfh).

"Tfh cells were first noticed in structures called germinal centers found in the lymphoid system - in lymph nodes and the spleen," said senior author Chen Dong, Ph.D., professor in M. D. Anderson's Department of Immunology. Germinal centers are powerful machines that churn out lots of antibodies.

In the adaptive immune system, B cells present an antigen - a distinctive piece of an invading bacterium or virus - to T cells. The bound antigen converts a naïve T cell to a helper T cell that secretes cytokines which help the B cells expand and produce a large volume of antibodies to destroy an intruder.

Tfh cells are concentrated with B cells in germinal centers, where they play a helper T cell's traditional role in B cell proliferation and antibody development.

"In germinal centers, the B cells not only proliferate but they also undergo hypermutation in their immunoglobulin genes so they can produce a diverse class of antibodies," Dong said. "These mutations also allow production of antibodies with stronger affinity for their target antigens."

There are pitfalls to this process. Tfh cells and germinal centers have been implicated in antibody-mediated autoimmune diseases such as lupus and rheumatoid arthritis, Dong noted. In these diseases, the germinal centers are likely producing the wrong type of antibody at great volume.

Genetic hypermutation among B cells in germinal centers creates a hotbed of genomic instability, which gives rise to some types of B cell lymphoma, Dong said.

The scientists set out to understand the role of Bcl6, which is short for B-cell lymphoma 6, a transcription factor previously shown to be selectively expressed in Tfh cells.

Last year, Dong and his colleagues reported in the journal Immunity that cytokines IL-6 and IL-21 drive the differentiation of Tfh cells. However, how these cytokines work had been unclear. In the current study, the team reported that that IL-6 and IL-21 induce expression of Bcl6 in the absence of transforming growth factor beta (TGFß) to drive T cell differentiation into Tfh. "Not only is Bcl6 a transcription factor expressed by Tfh cells, it also has a major function in generating these cells," Dong said.

When TGFß is present with IL-6 and IL-21, T cells differentiate into pro-inflammatory Th17 helper cells.

Another set of experiments showed that Bcl6 expression inhibits a T cell from differentiating into Th17, Th1 or Th2 cells, three other lines of helper cell

Finally, when the Bcl6 gene was knocked out in a mouse model, Tfh was nowhere to be found. "Bcl6 is absolutely required for Tfh generation and it's also important because it blocks other pathways that would lead the T cell into other helper cell types," Dong said.

Solving the molecular programming of Tfh establishes it as the fifth distinct lineage of helper T cell.

Dong and colleagues will continue to characterize Tfh and its relationship to other T helper cells. Dong is co-discoverer of the Th17 cell, which he and colleagues identified as the third T helper cell lineage when conventional wisdom held that there were only two such lines. They also showed that Th17 secretes interleukin-17, which is implicated in both inflammatory and autoimmune diseases.

Co-authors with Dong are first author Roza I. Nurieva, Ph.D., Yeonseok Chung, Ph.D., Gustavo J. Martinez, Xuexian O. Yang, Ph.D., Shinya Tanaka, Ph.D., Tatyana D. Matskevitch, and Yi-Hong Wang, all of M. D. Anderson's Department of Immunology.

The work is supported by research grants from the National Institute of Allergy and Infectious Diseases, the National Institute of Arthritis and Musculoskeletal and Skin Diseases, M. D. Anderson Cancer Center's Center for Targeted Therapy and the Leukemia and Lymphoma Society. Martinez is a Schissler Foundation Fellow in cancer research and a student in The University of Texas Graduate School of Biomedical Sciences, a joint program of M. D. Anderson and the UT Health Science Center at Houston. Chung has a postdoctoral fellowship grant from the Korea Science and Engineering Foundation. Nurieva is recipient of a Scientist Development Grant from the American Heart Association, and Dong is a Leukemia and Lymphoma Society Scholar and a Trust Fellow of M. D. Anderson Cancer Center.

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For four of the past six years, including 2008, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>