Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond base pairs: Mapping the functional genome

02.07.2012
Regulatory sequences of mouse genome sequenced for first time

Popularly dubbed "the book of life," the human genome is extraordinarily difficult to read. But without full knowledge of its grammar and syntax, the genome's 2.9 billion base-pairs of adenine and thymine, cytosine and guanine provide limited insights into humanity's underlying genetics.


In a paper published in the July 1, 2012, issue of the journal Nature, researchers at the Ludwig Institute for Cancer Research and the University of California, San Diego School of Medicine open the book further, mapping for the first time a significant portion of the functional sequences of the mouse genome, the most widely used mammalian model organism in biomedical research. Credit: UC San Diego School of Medicine

In a paper published in the July 1, 2012 issue of the journal Nature, researchers at the Ludwig Institute for Cancer Research and the University of California, San Diego School of Medicine open the book further, mapping for the first time a significant portion of the functional sequences of the mouse genome, the most widely used mammalian model organism in biomedical research.

"We've known the precise alphabet of the human genome for more than a decade, but not necessarily how those letters make meaningful words, paragraphs or life," said Bing Ren, PhD, head of the Laboratory of Gene Regulation at the Ludwig Institute for Cancer Research at UC San Diego. "We know, for example, that only one to two percent of the functional genome codes for proteins, but that there are highly conserved regions in the genome outside of protein-coding that affect genes and disease development. It's clear these regions do something or they would have changed or disappeared."

Chief among those regions are cis-regulatory elements, key stretches of DNA that appear to regulate the transcription of genes. Misregulation of genes can result in diseases like cancer. Using high-throughput sequencing technologies, Ren and colleagues mapped nearly 300,000 mouse cis-regulatory elements in 19 different types of tissue and cell. The unprecedented work provided a functional annotation of nearly 11 percent of the mouse genome, and more than 70 percent of the conserved, non-coding sequences shared with other mammalian species, including humans.

As expected, the researchers identified different sequences that promote or start gene activity, enhance its activity and define where it occurs in the body during development. More surprising, said Ren, was that the structural organization of the cis-regulatory elements are grouped into discrete clusters corresponding to spatial domains. "It's a case of form following function," he said. "It makes sense."

While the research is fundamentally revealing, Ren noted it is also just a beginning, a partial picture of the functional genome. Additional studies will be needed in other types of cells and at different stages of development.

"We've mapped and understand 11 percent of the genome," said Ren. "There's still a long way to march."

Co-authors are Yin Shen, Feng Yue, David F. McCleary, Zhen Ye, Lee Edsall, Samantha Kuan, Ulrich Wagner and Leonard Lee, all at the Ludwig Institute for Cancer Research; Jesse Dixon, Ludwig Institute for Cancer Research, Medical Scientist Training Program and Biomedical Sciences Graduate Program, UC San Diego; and Victor Lobanenkov, National Institute of Allergy and Infectious Diseases.

Funding for this research came, in part, from the National Human Genome Research Institute (grant R01HG003991).

About the Ludwig Institute for Cancer Research (LICR)

LICR is an international non-profit organization committed to improving the understanding and control of cancer through integrated laboratory and clinical discovery. Leveraging its worldwide network of investigators and the ability to sponsor and conduct its own clinical trials, the Institute is actively engaged in translating its discoveries into applications for patient benefit. Since its establishment in 1971, the Institute has expended more than $1.5 billion on cancer research.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>