Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More bang for your bond

22.02.2010
Size-controllable bulky ligands stabilize multiple bonds of heavy elements into photoactive materials

Organic compounds containing double or triple bonds can pack a powerful punch. By sharing electrons between atoms through a process called pi conjugation, unsaturated molecules often have exceptional photonic and electronic behavior, making them essential components in state-of-the-art products such as polymer light-emitting displays.

One way to boost the usefulness of multiply bonded materials is to add heavy elements other than carbon into organic frameworks. Now, Kohei Tamao and colleagues from the RIKEN Advanced Science Institute in Wako and Kyoto University have developed a size-controllable molecular ring system that enables double bonded silicon–phosphorus units (Si=P) to be securely incorporated into pi conjugated networks1—unlocking previously unseen photo-absorption and emission activity.

Because Si=P bonds are extremely reactive, chemists typically attach them to geometrically large molecules known as bulky ligands that protect the double bonded elements. Unfortunately, most bulky ligands cause the Si=P double bond to twist, disrupting the critical pi conjugation.

Tamao and his team designed a new type of bulky molecule—the so-called ‘Rind’ ligands—to address this rotational problem. Based on a rigid, symmetric skeleton of three fused rings known as s-hydrindacene, Rind groups also contain alkyl side chains that can be tailored in length to control ligand bulkiness.

Adding Rind ligands to Si- and P-based starting materials produced molecules with highly coplanar Si=P bond with aromatic groups on Si that maintained pi conjugation in the solid state and allowed a unique room temperature fluorescence to emerge. According to Tsukasa Matsuo, a co-author of the study, the Rind ligands interlock with each other to enforce the favored planar geometry for pi conjugation.

“Rind groups can make planar arrangements out of a variety of conjugated systems,” says Matsuo. “But the electronic effect of Rind itself is small, because they are perpendicular to the conjugated electron system.”

The researchers also discovered that Rind ligands produced startling results when used to stabilize molecules containing copper atoms and organic groups2. While organocopper compounds are extremely useful in synthetic chemistry, their structures remain largely unknown because of continuous aggregation and dissociation processes in solution. By intoducing Rind ligands to copper bromide, the team isolated stable compounds containing remarkable internal architectures, such as four copper atoms arranged into a planar square.

“We were surprised when we found the beautiful structures of the organocopper materials,” says Matsuo. The four-copper framework also gave new luminescent qualities to these complexes—another reason why the researchers are continuing to explore ways to make functional materials using innovative bulky Rind ligands.

The corresponding author for this highlight is based at the Functional Elemento-Organic Chemistry Unit, RIKEN Advanced Science Institute

Journal information
1. Li, B., Matsuo, T., Hashizume, D., Fueno, H., Tanaka, K. & Tamao, K. ð-Conjugated phosphasilenes stabilized by fused-ring bulky groups. Journal of the American Chemical Society 131, 13222–13223 (2009).

2. Ito, M., Hashizume, D., Fukunaga, T., Matsuo, T. & Tamao, K. Isolated monomeric and dimeric mixed diorganocuprates based on the size-controllable bulky ‘Rind’ ligands. Journal of the American Chemical Society 131, 18024–18025 (2009).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6177
http://www.researchsea.com

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>