Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bad food? How mesozooplankton reacts to blue-green algae blooms


Marine researchers from Warnemünde have succeeded in deciphering the mysterious feeding behaviour of mesozooplankton in the presence of blue-green algae blooms, by analysing stable nitrogen isotopes in amino acids. They found out that contradictory observations, according to which both the dominance of herbivorous and carnivorous diets occurred, can be explained by the aging process of a bloom. Apparently, the stage of a bloom determines whether "meat" or "vegetables" are preferred. In view of an assumed future worldwide increase in such blooms, their findings open up new perspectives on potential developments within a key group of the marine food web.

It forms one of the most important pillars of the marine food web worldwide: the so-called mesozooplankton comprises animals between 0.2 and 20 mm in size floating in the water. Their diet is varied. There are carnivorous animals as well as "vegetarians" which make use of the phytoplankton directly.

Climate change will increase the global occurrence of blue-green algae blooms. Thus, understanding how marine food webs make use of them becomes crucial.

P. Braun / IOW

Organic material formed by algae and bacteria during primary production is processed by them either directly or via several steps for further use in the complex food web of the oceans.

Their diet determines whether energy-rich food is available for higher trophic levels - such as fish - or rather narrow food, because at each intermediate stage on the way from phytoplankton to mesozooplankton energy is lost, larger amounts have to be consumed in order to absorb the same nutritional value.

Mesozooplankton thus occupies a key ecological position and the question of whether carnivore or herbivore nutrition prevails at this level can be decisive for the entire food web in the ocean.

However, investigating the exact relationship between carnivores and vegetarians in mesozooplankton has so far only been possible in complex experiments under laboratory or mesocosm conditions.

Natalie Loick-Wilde and her colleagues have now succeeded in entering the real environment with a new approach: using the analysis of stable nitrogen isotopes in amino acids, she was able to directly determine the ratio of carnivores to herbivores on zooplankton samples from different locations in the Baltic Sea and relate these values to the environmental conditions measured on site.

This approach enables the direct investigation of a wide range of possible influences on the diet and thus the complexity of the food web and the energy content of mesozooplankton. In a recent article published in the international journal "Global Change Biology", the interdisciplinary team of authors consisting of biologists, chemists and physicists describes how these food relationships in mesozooplankton develop under the influence of cyanobacterial blooms, commonly known as blue-green algae blooms.

Large, filamentous, nitrogen-fixing cyanobacteria, such as Nodularia or Trichodesmium, are regarded as profiteers of the increasingly rapid warming of the oceans. Their influence on mesozooplankton will therefore increase in the future.

"The cyanobacteria we are talking about here are relatively large and often produce toxins. They are rather unattractive for zooplankton as food," explains Natalie Loick-Wilde, who heads the working group "Aquatic food webs" at the Leibniz Institute for Baltic Sea Research in Warnemünde (IOW).

"How such a rather bad food supply affects feeding behaviour in mesozooplankton has so far been unclear. Different studies led to contradictory results: sometimes the dominance of carnivorous, sometimes herbivorous diet was observed.

Using her new approach, Natalie Loick-Wilde and her interdisciplinary team of authors have now been able to show that the shift towards carnivorous dominance runs parallel to the ageing process of the blooms. The planktonic community became more diverse.

In addition to autotrophic primary producers, who only need light and nutrients for their reproduction, heterotrophic microorganisms, which already feed on algae and bacteria, played a major role in the food spectrum of mesozooplankton, which thus became carnivorous instead of herbivorous.

The consequences of this for the biogeochemical functions of mesozooplankton and thus also for the higher trophic levels and whether the mechanism can also be transferred to the large, seasonal Trichodesmium blooms of the tropical and subtropical oceans are the subject of further research. For Loick-Wilde, however, it is also the biogeochemical models that can benefit from her research:

"While the feeding behaviour of mesozooplankton in the models has always been either herbivor or carnivor before, we can now also incorporate the changes that occur under changing environmental conditions. This is a big step towards understanding the dynamics of the food web".

Wissenschaftliche Ansprechpartner:

Dr. Natalie Loick-Wilde | phone: +49 381 – 5197 206 |
Department Biological Oceanography
Leibniz Institute for Baltic Sea Research Warnemünde


Loick‐Wilde N, Fernández‐Urruzola I, Eglite E, Liskow I, Nausch M, Schulz‐Bull D, Wodarg D, Wasmund N, Mohrholz V. Stratification, nitrogen fixation, and cyanobacterial bloom stage regulate the planktonic food web structure. Glob Change Biol. 2019;00:1–17.

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft
Further information:

More articles from Life Sciences:

nachricht Rising water temperatures could endanger the mating of many fish species
03.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

Science & Research
Overview of more VideoLinks >>>