Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterial Plasmids -- the Freeloading and the Heavy-Lifters -- Balance the High Price of Disease

06.02.2012
Studying self-replicating genetic units, called plasmids, found in one of the world's widest-ranging pathogenic soil bacteria -- the crown-gall-disease-causing microorganism Agrobacterium tumefaciens -- Indiana University biologists are showing how freeloading, mutant derivatives of these plasmids benefit while the virulent, disease-causing plasmids do the heavy-lifting of initiating infection in plant hosts.

The research confirms that the ability of bacteria to cause disease comes at a significant cost that is only counterbalanced by the benefits they experience from infected host organisms.

A. tumefaciens is widely studied for its remarkable biology not only because it causes disease in over 140 genera of broadleaf plants, including fruit trees, grapes, roses and walnut trees, but also because it is considered one of the most important tools for plant biotechnology: It is the only organism known to routinely engage in inter-kingdom lateral gene transfer. A. tumefaciens infects host plants by transferring a portion of its own DNA into plant cells, and this integrated bacterial DNA is expressed in the plant cells, leading diseased plants to develop tumors and produce resources that benefit the pathogen.

"We've identified two types of costs the plant pathogen A. tumefaciens pays for traits conferred by genes carried on plasmids," said lead author Thomas G. Platt, a postdoctoral researcher in the IU Bloomington College of Arts and Sciences' Department of Biology. "There is a relatively low cost of maintaining the tumor-inducing virulence plasmid, but there is also a dramatically large cost of expressing the genes that are required to infect plants."

Plants with crown gall disease can also benefit a second type of plasmid that can be found in A. tumefaciens: Nonpathogenic plasmids that lack the genes required to infect plants, yet are still able to benefit from the breakdown of nutrient resources released by infected plant tissue.

"These nonvirulent strains are able to freeload on public goods produced by host plants infected by their disease-causing relatives, while themselves avoiding the burdens associated with A. tumefaciens' virulence plasmid," Platt explained. "And our results suggest that at least one source of the selective pressure favoring the spread of these avirulent mutants stems from those high costs associated with the expression of the genes underlying pathogenesis."

Scientists are especially interested in freeloading or cheating strains of bacteria as a possible means of constraining infection caused by more aggressive, pathogenic strains. Creating something of a balancing act, mutant cheater strains may counter or constrain virulence as they maintain higher fitness by not having to invest in the cellular machinery virulent bacteria employ to infect hosts.

"The population dynamics and maintenance of bacterial plasmids depend on the costs they impose and benefits they confer on the cells that host them, and those costs and benefits are environmentally context dependent," Platt said. "The outcome of competition between two agrobacteria strains such as the ones we have been studying varies with the environmental conditions in which they are competing, and this genotype-by-genotype-by-environment interaction suggests that the virulence plasmid may be subject to selective pressures that vary over space and time."

Platt and IU biology professors James D. Bever and Clay Fuqua recently published the measured fitness costs imposed by plasmids to host cells, under certain environmental conditions, in the research article "A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis," that appeared in Proceedings of the Royal Society B. That work will be expanded upon in research accepted for publication in an upcoming edition of the journal Evolution, where the team further examines how cooperation benefits depend on resource availability and the importance of ecological dynamics, including resource consumption and population growth, on the evolution of cooperative traits.

To speak with Platt or for more information, please contact Steve Chaplin, IU Communications, at 812-856-1896 or stjchap@iu.edu. Tweeting Indiana University science: @IndianaScience

Steve Chaplin | Newswise Science News
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>