Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria in urinary tract infections caught making burglar's tools

23.02.2009
Bacteria that cause urinary tract infections (UTIs) make more tools for stealing from their host than friendly versions of the same bacteria found in the gut, researchers at Washington University School of Medicine in St. Louis and the University of Washington have found.

The tools, compounds called siderophores, allow the bad bacteria to steal iron from their hosts, making it easier for the bacteria to survive and reproduce. But they also provide a potential way to target the bad strains of bacteria for eradication without adversely affecting the good strains, researchers report in a study published online Feb. 20 by PLoS Pathogens.

"When we treat an infection with antibiotics, it's like dropping a bomb—nearly everything gets wiped out, regardless of whether it's helpful or harmful," says lead author Jeff Henderson, M.D., Ph.D., a Washington University infectious disease specialist who treats patients with UTIs at Barnes-Jewish Hospital. "We'd like to find ways to target the bad bacteria and leave the good bacteria alone, and these siderophores are a great lead in that direction."

UTIs are one of the most common infections, causing around $1.6 billion in medical expenses every year in the United States. Half of all women will experience a UTI at some point in their lives, and recurrent UTIs affect 20 to 40 percent of these patients. Scientists believe 90 percent of all UTIs are caused by the bacterium Escherichia coli (E. coli).

The E. coli that cause UTIs may come from the human gut, where several strains of the bacteria reside. Scientists think some of those strains help their human hosts by aiding digestion and blocking other infectious organisms. To study how friendly and infection-causing E. coli strains differ, Henderson and colleagues at the Center for Women's Infectious Disease Research at Washington University used a new approach called metabolomics. Instead of examining genes, metabolomics analyzes all the chemicals produced by a cell, which includes bacterial growth signals, toxins and waste products.

"This allows us to look at the end products of many genes working together," says senior author Scott Hultgren, Ph.D., the Helen L. Stoever Professor of Molecular Microbiology. "We assess what all the various assembly lines are producing and which products disease-causing bacteria prefer to make, such as certain siderophores."

Bacteria studied in the experiment came from recurrent UTI patients treated at the University of Washington. Researchers cultured both E. coli from stool samples and urine samples. They found that the strains from urine made more yersiniabactin and salmochelin, two siderophores that help bacteria scavenge iron to support their own survival.

Iron is an important nutrient typically kept under tight control by the host, and there's evidence that a back-and-forth contest centered on iron has been raging for millennia between disease-causing microbes and the hosts they exploit. For example, studies suggest that humans may make a protein that specifically blocks particular bacterial siderophores.

There may be multiple ways to take advantage of the infectious bacterial strains' reliance on siderophores. Researchers will try to block or disrupt the activity of the proteins that make siderophores, but they also may use what Henderson calls a "Trojan horse" strategy.

"To steal iron, siderophores have to be sent out from the cell, bind to the iron, and then be taken back into the cell," he explains. "If we can design an antibiotic that looks like a siderophore, we might be able to trick only disease-causing bacteria into taking up the drug while leaving other bacteria alone."

Henderson JP, Crowley JR, Pinkner JS, Walker JN, Tsukayama P, Stamm WE, Hooton TM, Hultgren SJ. Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathogens 5(2): e1000305. doi:10.1371/journal.ppat.1000305

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>