Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria navigate microparticle swarms to target: a biohybrid microrobot develops

26.06.2015

In the 1966 movie Fantastic Voyage, a submarine complete with crew is shrunk in size so that it can navigate through the human body, enabling the crew to perform surgery in the brain. This scenario remains in the realm of science fiction, and transporting a surgical team to a disease site will certainly remain fiction. Nevertheless, tiny submarines that could navigate through the body could be of great benefit: they could deliver drugs precisely to a target location, without causing side effects and stressing the whole organism.

If things go according to Metin Sitti, director of the Physical Intelligence Department at the Max Planck Institute for Intelligent Systems in Stuttgart, with the help of biohybrid microrobots targeting therapy for example within stagnant fluids inside the human body such as inside the eye, spinal cord fluid, brain lobes, or urinary tract could in the foreseeable future come close to reality.


Swarm of biohybrid systems, composed of flagellated bacteria attached to microparti-cles, navigate through stagnant fluids such as inside the eye, the spinal cord, the brain, or the urinary tract.

Dr. Metin Sitti

The little helpers would accurately home-in on targets in the body, releasing a significant amount on drug precisely at the wished target location, without stressing the rest of the human body with side effects that this medication could potentially generate.

That this dream based on the Fantastic Voyage could come true in the near future is strengthened by recent scientific outcomes, published in Scientific Reports (Nature) this month. Researchers from the Carnegie Mellon University in Pittsburgh, USA and the Max Planck Institute for Intelligent Systems in Stuttgart have shown recently that flagellated bacteria attached to a large number of microparticles can carry the microsystem as a swarm to the desired target.

Maintaining an appropriate environment, like optimal pH level or non-polluted surrounding is essential for the survival of most microorganisms like bacteria, and they have developed sensing and propelling behaviors to move away from “un-wished or bad” environments. Flagellated bacteria such as E. coli or S. marcescens move self-propelled towards a desired pH level, which is called pH-taxis.

Scientist now take advantage out of these “natural” properties and link bacteria (bio-component) to artificial components like microparticles, to create swarms of biohybrid microrobots with a size of 1 to 5 micron (micron = 1/1000 mm), which can be manufac-tured fast at low costs.

“The bacteria serves as the sensor and actuator, while the microparticle is loaded with a specific cargo, like a drug that is intended to be delivered to a specific target location, “ explains Dr. Metin Sitti, director at the Max Planck Institute for Intelligent Systems in Stuttgart.

Given the pH-tactic response of a specific bacterial strain and knowing that cancerous tumors have a lower pH compared to that of periphery normal tissue, the use of a microrobotic system for targeted drug delivery application by pH-taxis seems to be attractive.

Until now, it has been unclear whether a specific number of bacteria (mostly in the range of 1 to 10), all stochastically linked to the same microparticle, would move as a group in the same direction, without releasing the particle. And even if a swarm consis-ting of several thousand copies of these biohybrid systems would manage to do so. A team of international researchers have now shown this kind of “swarm movement” of biohybrid microrobots for the first time, examined in water-like fluids, which serve as model fluids for non-floating liquor like naturally present in spinal cord fluid, brain lobes, eye, and urinary tract of the human body.

Since the bacteria strains used for the biohybrid systems are not pathogenic for human and the complete biobybrid microrobot will degrade afterwards, no burden has to be expected for the body.

One restriction of this bacteria-propelled microrobots may be the limited distance they can swim. External guidance will be needed to get the device most of the way to its destination fast. One obvious strategy for guiding a robot to the right spot fast is to add magnetic micro/nanoparticles to its synthetic body and to steer it externally with mag-nets.

Magnetic steering would take the microrobots fast to the target region coarsely, and turning off the magnetic field would allow cell-based steering using pH-taxis to reach to the target region finely. When arrived at the target location, the drug cargo needs to be released, either actively or passively. The passive way could be that the drug itself responds on pH and will be released automatically at the preferred pH value. The active release could be achieved by remote heating of metallic nanocomponents and hydrogel body of the robot, which would trigger the drug release.

Further steps might be to genetically modify bacteria in terms of their preferred pH value or to improve their motility. Within the human body, lots of helpful bacteria are resident, for example various strains of bacteria in the intestinal mucosa are necessary for the physiological digestion.

“In all of these experiments, safety aspects are of main importance for us”, states Dr. Metin Sitti. “The bacteria and the artificial component of the biohybrid microrobot are carefully selected and engineered, to avoid any toxic effect or other negative immune response when injected into any living system in the future.”

Weitere Informationen:

http://pi.is.mpg.de/

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

More articles from Life Sciences:

nachricht Something old, something new in the Ocean`s Blue
13.11.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics
13.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnetic tuning at the nanoscale

13.11.2019 | Physics and Astronomy

At future Mars landing spot, scientists spy mineral that could preserve signs of past life

13.11.2019 | Physics and Astronomy

Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard

13.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>