Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria may travel thousands of miles through the air globally

25.03.2019

Study could shed light on harmful bacteria that share antibiotic resistance genes

Bacteria may travel thousands of miles through the air worldwide instead of hitching rides with people and animals, according to Rutgers and other scientists. Their "air bridge" hypothesis could shed light on how harmful bacteria share antibiotic resistance genes.


Bacteria were collected from this hot spring in the El Tatio region in northern Chile.

Credit: Yaroslav Ispolatov


A hot spring in the El Tatio region in northern Chile.

Credit: Yaroslav Ispolatov

"Our research suggests that there must be a planet-wide mechanism that ensures the exchange of bacteria between faraway places," said senior author Konstantin Severinov, a principal investigator at the Waksman Institute of Microbiology and professor of molecular biology and biochemistry in the School of Arts and Sciences at Rutgers University-New Brunswick.

"Because the bacteria we study live in very hot water - about 160 degrees Fahrenheit - in remote places, it is not feasible to imagine that animals, birds or humans transport them," Severinov said. "They must be transported by air and this movement must be very extensive so bacteria in isolated places share common characteristics."

Severinov and other researchers studied the "molecular memories" of bacteria from their encounters with viruses, with the memories stored in bacterial DNA, according to a study in the journal Philosophical Transactions of the Royal Society B.

Bacteriophages - viruses of bacteria - are the most abundant and ubiquitous forms of life on the planet, the study notes. The viruses have a profound influence on microbial populations, community structure and evolution.

The scientists collected heat-loving Thermus thermophilus bacteria in hot gravel on Mount Vesuvius and hot springs on Mount Etna in Italy; hot springs in the El Tatio region in northern Chile and southern Chile's Termas del Flaco region; and hot springs in the Uzon caldera in Kamchatka, Russia.

In bacterial cells infected by viruses, molecular memories are stored in special regions of bacterial DNA called CRISPR arrays. Cells that survive infections pass the memories - small pieces of viral DNA - to their offspring. The order of these memories allows scientists to follow the history of bacterial interaction with viruses over time.

Initially, the scientists thought that bacteria of the same species living in hot springs thousands of miles apart - and therefore isolated from each other - would have very different memories of their encounters with viruses. That's because the bacteria all should have independent histories of viral infections. The scientists also thought that bacteria should be evolving very rapidly and become different, much like the famous finches Charles Darwin observed on the Galapagos Islands.

"What we found, however, is that there were plenty of shared memories - identical pieces of viral DNA stored in the same order in the DNA of bacteria from distant hot springs," Severinov said. "Our analysis may inform ecological and epidemiological studies of harmful bacteria that globally share antibiotic resistance genes and may also get dispersed by air instead of human travelers."

The scientists want to test their air bridge hypothesis by sampling air at different altitudes and locations around the world and by identifying the bacteria there, he said. They would need access to planes, drones or research balloons.

###

The study included scientists at the Russian Academy of Sciences; Skolkovo Institute of Science and Technology in Russia; Pasteur Institute in France; University of Santiago de Chile; and Weizmann Institute of Science in Israel.

Media Contact

Todd Bates
todd.bates@rutgers.edu
848-932-0550

 @RutgersU

http://www.rutgers.edu 

Todd Bates | EurekAlert!
Further information:
https://news.rutgers.edu/bacteria-may-travel-thousands-miles-through-air-globally/20190319#.XJErG6BKi71
http://dx.doi.org/10.1098/rstb.2018.0092

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>