Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria may travel thousands of miles through the air globally

25.03.2019

Study could shed light on harmful bacteria that share antibiotic resistance genes

Bacteria may travel thousands of miles through the air worldwide instead of hitching rides with people and animals, according to Rutgers and other scientists. Their "air bridge" hypothesis could shed light on how harmful bacteria share antibiotic resistance genes.


Bacteria were collected from this hot spring in the El Tatio region in northern Chile.

Credit: Yaroslav Ispolatov


A hot spring in the El Tatio region in northern Chile.

Credit: Yaroslav Ispolatov

"Our research suggests that there must be a planet-wide mechanism that ensures the exchange of bacteria between faraway places," said senior author Konstantin Severinov, a principal investigator at the Waksman Institute of Microbiology and professor of molecular biology and biochemistry in the School of Arts and Sciences at Rutgers University-New Brunswick.

"Because the bacteria we study live in very hot water - about 160 degrees Fahrenheit - in remote places, it is not feasible to imagine that animals, birds or humans transport them," Severinov said. "They must be transported by air and this movement must be very extensive so bacteria in isolated places share common characteristics."

Severinov and other researchers studied the "molecular memories" of bacteria from their encounters with viruses, with the memories stored in bacterial DNA, according to a study in the journal Philosophical Transactions of the Royal Society B.

Bacteriophages - viruses of bacteria - are the most abundant and ubiquitous forms of life on the planet, the study notes. The viruses have a profound influence on microbial populations, community structure and evolution.

The scientists collected heat-loving Thermus thermophilus bacteria in hot gravel on Mount Vesuvius and hot springs on Mount Etna in Italy; hot springs in the El Tatio region in northern Chile and southern Chile's Termas del Flaco region; and hot springs in the Uzon caldera in Kamchatka, Russia.

In bacterial cells infected by viruses, molecular memories are stored in special regions of bacterial DNA called CRISPR arrays. Cells that survive infections pass the memories - small pieces of viral DNA - to their offspring. The order of these memories allows scientists to follow the history of bacterial interaction with viruses over time.

Initially, the scientists thought that bacteria of the same species living in hot springs thousands of miles apart - and therefore isolated from each other - would have very different memories of their encounters with viruses. That's because the bacteria all should have independent histories of viral infections. The scientists also thought that bacteria should be evolving very rapidly and become different, much like the famous finches Charles Darwin observed on the Galapagos Islands.

"What we found, however, is that there were plenty of shared memories - identical pieces of viral DNA stored in the same order in the DNA of bacteria from distant hot springs," Severinov said. "Our analysis may inform ecological and epidemiological studies of harmful bacteria that globally share antibiotic resistance genes and may also get dispersed by air instead of human travelers."

The scientists want to test their air bridge hypothesis by sampling air at different altitudes and locations around the world and by identifying the bacteria there, he said. They would need access to planes, drones or research balloons.

###

The study included scientists at the Russian Academy of Sciences; Skolkovo Institute of Science and Technology in Russia; Pasteur Institute in France; University of Santiago de Chile; and Weizmann Institute of Science in Israel.

Media Contact

Todd Bates
todd.bates@rutgers.edu
848-932-0550

 @RutgersU

http://www.rutgers.edu 

Todd Bates | EurekAlert!
Further information:
https://news.rutgers.edu/bacteria-may-travel-thousands-miles-through-air-globally/20190319#.XJErG6BKi71
http://dx.doi.org/10.1098/rstb.2018.0092

More articles from Life Sciences:

nachricht Cohesin - a molecular motor that folds our genome
22.11.2019 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht Chemists create new route to PHAs: naturally degradable bioplastics
22.11.2019 | Colorado State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Cohesin - a molecular motor that folds our genome

22.11.2019 | Life Sciences

Magnesium deprivation stops pathogen growth

22.11.2019 | Health and Medicine

Detecting mental and physical stress via smartphone

22.11.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>