Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria-infecting viruses bind mucosal surface and protect from disease

25.11.2019

Mucosal surfaces protect organisms from external stressors and disease. Bacteriophages, viruses that infect bacteria, have been shown to preferentially bind to mucosal surfaces. This has been suggested to provide an extra level of immunity against bacterial infections. Researchers at the University of Jyväskylä, Finland tested this idea using fish, phages (viruses) and a fish-infecting bacteria. Phages were confirmed to bind to the mucosal surface, staying there for days and give protection from subsequent bacterial infection. Research was published in mBio in November 2019.

The mucosal surfaces are important for protection of tissues and homeostasis, but often targeted by disease-causing bacteria. Phages have been suggested to specifically bind to host mucosal surfaces and prevent colonization by pathogenic bacteria.


Helium ion microscope image of bacterial growth.

Credit: Gabriel Almeida/University of Jyväskylä

In this symbiotic model phage populations are enriched in the mucus, a substrate in which encounters with their bacterial hosts are more probable, while the animal benefits from protection against invading bacteria.

Researchers at the University of Jyväskylä tested this idea using rainbow trout, phages (viruses) and a fish-infecting bacterium (Flavobacterium columnare). Phages were found to bind to fish mucosa, and maintain there for several days.

Phages bound in mucus also protected the fish from diseases, although the pathogenic bacteria had a strong chemotaxis towards mucus, and exposure to mucosal molecules made them more virulent.

However, the mucosal environment made the bacteria more susceptible for phage infections, revealing a new aspect of the tripartite interactions between mucosal surfaces, bacteria and phages.

In conclusion, the mucosal environment influence both bacteria and phages. These interactions are important for understanding disease ecology and has significant impact in preventive phage therapy approaches.

###

The research has been published in mBio: https://mbio.asm.org/content/10/6/e01984-19

See also https://naturemicrobiologycommunity.nature.com/channels/346-behind-the-paper/posts/55228-tripartite-biological-interactions-between-viruses-bacteria-and-animals

For further information:

Postdoctoral researcher Gabriel Almeida, gabriel.m.almeida@jyu.f

Communications officer, Tanja Heikkinen, tanja.s.heikkinen@jyu.fi, tel. 050 581 8351

Nanoscience Center at University of Jyväskylä: https://www.jyu.fi/science/en/nanoscience-center https://www.jyu.fi/science/en

Facebook: jyuscience Twitter: jyscience Instagram: jyscience

Media Contact

Gabriel Almeida
gabriel.m.almeida@jyu.fi

http://www.jyu.fi 

Gabriel Almeida | EurekAlert!
Further information:
https://www.jyu.fi/en/current/archive/2019/11/bacteria-infecting-viruses-bind-mucosal-surface-and-protect-from-disease
http://dx.doi.org/10.1128/mBio.01984-19

More articles from Life Sciences:

nachricht Towards better anti-cancer drugs: New insights into CDK8, an important human oncogene
28.01.2020 | Universität Bayreuth

nachricht Unique centromere type discovered in the European dodder
28.01.2020 | Leibniz Institute of Plant Genetics and Crop Plant Research

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

AI can jump-start radiation therapy for cancer patients

28.01.2020 | Health and Medicine

Unique centromere type discovered in the European dodder

28.01.2020 | Life Sciences

It’s closeness that counts: how proximity affects the resistance of graphene

28.01.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>