Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria disarmer activates fiber formation in Parkinson’s protein

16.02.2012
The same substance that hampers the infection capability of bacteria can hasten the fiber formation of the protein that is involved in the development of Parkinson’s disease.

The study shows how important basic research is to our understanding of possible side effects from drug candidates interacting with various target proteins.

The study was done by researchers at Umeå University in Sweden and is published in the latest issue of the prestigious Journal of the American Chemical Society. The findings surprise all the researchers involved.

Fredrik Almqvist, professor of organic chemistry, working with colleagues at Washington University in St. Louis and the University of Michigan in Ann Arbor, has developed a molecule, FN075, that slows down the infection capability of bacteria. This molecule blocks the growth and function of the hair-like shoots that bacteria use to cause infections. Even though the molecule is not used in any drugs today, this disarming principle could be of great importance in future struggles against resistance to antibiotics.

Interestingly, bacteria’s hair-like shoots are structured according to the same principle as amyloid proteins, improperly folded proteins that accumulate in nerve disorders like Parkinson’s and Alzheimer’s diseases.

“So we tested whether FN 075 could also hamper the formation of amyloids in a protein that is implicated in Parkinson’s disease. But instead it turned out that the molecule boosted the formation of amyloid structures,” says Pernilla Wittung-Stafshede, professor of biological chemistry.

In other words, the same tiny molecule can have exactly the opposite effect depending on what protein it encounters and in what surroundings. The study thus shows that it is important to test for possible side effects that new substances might have on amyloid proteins.

“There seems to be a fine balance between what activities these types of substances hamper and what activities they prompt,” says Pernilla Wittung-Stafshede.

She says it is too early to say whether the effects on the amyloid proteins are positive or negative from a medical perspective. On the other hand, it is clear that molecules like FN075 are key research tools to achieve an understanding of these types of complex processes.

The new findings have inspired the researchers regarding how to continue to design and use small molecules that can affect amyloid formation.

“Perhaps some of the body’s own small metabolites help to trigger amyloid formation in nerve disorders like Parkinson’s and Alzheimer’s,” wonders Fredrik Almqvist, who declares that they will now be following up these findings.

The research is being conducted at the Chemical Biology Centre, KBC, and the Umeå Centre for Microbial Research, UCMR at Umeå University and is based on the combined expertise of the chemists Pernilla Wittung-Stafshede, Magnus Wolf-Watz, and Fredrik Almqvist. Most of the study was carried out by post-doctoral fellows Istvan Horvath, Christoph F. Weise, and Emma Andersson. With the assistance of the KBC platform for nuclear magnetic resonance, NMR, the scientists have been able to study proteins at the atomic level.

For more information, please contact:
Pernilla Wittung-Stafshede, professor of biological chemistry, Department of Chemistry, Chemical Biological Centre, KBC, Umeå University

E-mail: pernilla.wittung@chem.umu.se

Fredrik Almqvist, professor of organic chemistry, Department of Chemistry, Chemical Biological Centre, KBC, and Umeå Centre for Microbial Research, UCMR, Umeå University
Tel: +46 (0)90-7866925
E-mail: fredrik.almqvist@chem.umu.se
Magnus Wolf-Watz, associate professor of chemistry, Department of Chemistry, Chemical Biological Centre, KBC, Umeå University
Tel: +46 (0)90-786 76 90
E-mail: magnus.wolf-watz@chem.umu.se
Original publication:
Istvan Horvath, Christoph Felix Weise, Emma K. Andersson, Erik Chorell, Magnus Sellstedt, Christoffer Bengtsson, Anders Olofsson, Scott J. Hultgren, Matthew R Chapman, Magnus Wolf-Watz, Fredrik Almqvist, and Pernilla EL Wittung-Stafshede. Mechanisms of protein oligomerization: Inhibitor of functional amyloids templates α-synuclein fibrillation. Journal of the American Chemical Society 2012. DOI: 10.1021/ja209829m. 2012-02-09

Karin Wikman | idw
Further information:
http://pubs.acs.org/doi/abs/10.1021/ja209829m
http://www.umu.se

More articles from Life Sciences:

nachricht Dissolving protein traffic jam at the entrance of mitochondria
23.05.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Producing tissue and organs through lithography
23.05.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>