Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria as pacemaker for the intestine

22.11.2017

CAU research team discovers connection between microbiome and tissue contractions that are indispensable for healthy bowel functions

Spontaneous contractions of the digestive tract play an important role in almost all animals, and ensure healthy bowel functions. From simple invertebrates to humans, there are consistently similar patterns of movement, through which rhythmic contractions of the muscles facilitate the transport and mixing of the bowel contents.


Body contractions in Hydra are triggered by nerve cells (in green), while bacteria (rod-shaped cells in red) influence the underlying pacemaker activity.

Image: Christoph Giez, Dr. Alexander Klimovich


Hydra’s nerve cells (in green) generate electrical impulses that cause contractions of muscle fibers (shown in red) in the gastric cavity wall.

Image: Christoph Giez, Dr. Alexander Klimovich

These contractions, known as peristalsis, are essential for the digestive process. With various diseases of the digestive tract, such as severe inflammatory bowel diseases in humans, there are disruptions to the normal peristalsis.

To date, very little research has explored the factors underlying the control of these contractions. Now, for the first time, a research team from the Cell and Developmental Biology (Bosch AG) working group at the Zoological Institute at Kiel University (CAU) has been able to prove that the bacterial colonisation of the intestine plays an important role in controlling peristaltic functions.

The scientists published their results yesterday - derived from the example of freshwater polyps Hydra - in the latest issue of Scientific Reports.

The triggers for the normal spontaneous contractions of the muscle tissue are so-called pacemaker cells of the nervous system. In a specific rhythm and without any external stimulation, they emit electrical impulses, that ultimately reach the smooth muscles of the intestinal wall, and cause them to contract. Although the impulses as such occur by themselves, their frequency and intensity, however, are subject to external influences.

"The example of the simple freshwater polyp Hydra has shown us that the bacterial colonisation of the organism can affect the contractions of its digestive cavity. Most likely they do so by modulating the underlying pacemaker signals," said Professor Thomas Bosch, head of the study and spokesperson for the Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms".

Unlike other more complex organisms, Hydra have no bowel in the true sense of the word. Their simple body cavity assumes, amongst other things, the function of a digestive tract; the surrounding tissue also exhibits the typical contractions associated with more highly-developed intestines.

To find out how peristalsis is regulated in the freshwater polyps, the researchers compared normal Hydra which had typical bacterial colonisation with those that had their microbiome completely removed with an antibiotic cocktail. In comparison, these organisms without bacterial colonisation - also referred to as germ-free polyps - exhibited a reduction in contractions by about half. At the same time, the rhythm of the movements became disrupted, and some of the breaks between the contractions were much longer. Thus, the absence of the typical microbiome in Hydra compromised the peristaltic movements in the body cavity.

In a further step, the scientists restored the specific bacterial colonisation in the germ-free organisms. Initially, they introduced each of the five most common bacterial species found in the Hydra microbiome individually back into the sterile polyps. It turned out that this individual bacterial colonisation has no appreciable effect on the frequency and timing of contractions. Only the joint re-introduction of the five main representatives of the microbiome led to a marked improvement in peristalsis, although even then, the pattern of contractions was not fully normalised. Interestingly, an extract produced from the colonising bacteria had a similarly positive influence.

From these observation the Kiel research team concluded that only the natural Hydra microbiome - characterised by a balance between the bacterial species present - can play an important pacemaker role in peristalsis. They discovered that, in this case, certain molecules secreted by the bacteria can intervene in the control mechanism of the pacemaker cells. As such, bacterial signals can have a decisive effect on the pattern of spontaneous peristaltic contractions. "We were able to demonstrate for the first time that in our simple model organism, the microbiome has an indispensable function in the frequency and timing of tissue contractions," emphasised Bosch.

In addition, the example of the evolutionarily ancient model organism Hydra shows us that the control of vital processes of multicellular organisms by their bacterial symbionts already originated very early in the evolution of life, continued Bosch. These ground-breaking results are especially promising for medical research: "The fundamental explanation of the cooperation between organism and microbiome in regulating peristalsis will in future help us to understand the emergence of severe diseases, which arise from disrupted movement of the intestine," summarised Bosch.

Original publication:
Andrea P. Murillo-Rincón, Alexander Klimovich, Eileen Pemöller, Jan Taubenheim, Benedikt Mortzfeld, René Augustin & Thomas C.G. Bosch (2017): “Spontaneous body contractions are modulated by the microbiome of Hydra”. Scientifc Reports, Published on 21.11.2017, https://www.nature.com/articles/s41598-017-16191-x

Photos are available to download:
http://www.uni-kiel.de/download/pm/2017/2017-368-1.gif
Caption: The typical contraction pattern of the freshwater polyp Hydra: Contraction and relaxation of the same animal over the course of three minutes.
Animation: Andrea Murillo-Rincon, Dr. Alexander Klimovich

http://www.uni-kiel.de/download/pm/2017/2017-368-2.jpg
Caption: Body contractions in Hydra are triggered by nerve cells (in green), while bacteria (rod-shaped cells in red) influence the underlying pacemaker activity.
Image: Christoph Giez, Dr. Alexander Klimovich

http://www.uni-kiel.de/download/pm/2017/2017-368-3.jpg
Caption: Hydra’s nerve cells (in green) generate electrical impulses that cause contractions of muscle fibers (shown in red) in the gastric cavity wall.
Image: Christoph Giez, Dr. Alexander Klimovich

Contact:
Prof. Thomas Bosch
Zoological Institute, Kiel University
Tel.: +49 (0)431-880-4170
E-mail: tbosch@zoologie.uni-kiel.de

More information:
Priority research area “Kiel Life Science”, Kiel University
http://www.kls.uni-kiel.de

Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms", Kiel University:
http://www.metaorganism-research.com

Cell and Developmental Biology (Bosch AG) working group,
Zoological Institute, Kiel University:
http://www.bosch.zoologie.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Press, Communication and Marketing, Dr Boris Pawlowski, Text: Christian Urban
Postal address: D-24098 Kiel, Germany, Telephone: +49 (0)431 880-2104, Fax: +49 (0)431 880-1355
E-mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni
Facebook: www.facebook.com/kieluni, Instagram: www.instagram.com/kieluni

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Phagocytes versus killer cells - A closer look into the tumour tissue
21.10.2019 | Universität Duisburg-Essen

nachricht How intestinal cells renew themselves – the role of Klumpfuss in cell differentiation
21.10.2019 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Fraunhofer LBF and BAM develop faster procedure for flame-retardant plastics

21.10.2019 | Materials Sciences

For EVs with higher range: Take greater advantage of the potential offered by lightweight construction materials

21.10.2019 | Materials Sciences

Benefit and risk: Meta-analysis draws a heterogeneous picture of drug-coated balloon angioplasty

21.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>