Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria as pacemaker for the intestine

22.11.2017

CAU research team discovers connection between microbiome and tissue contractions that are indispensable for healthy bowel functions

Spontaneous contractions of the digestive tract play an important role in almost all animals, and ensure healthy bowel functions. From simple invertebrates to humans, there are consistently similar patterns of movement, through which rhythmic contractions of the muscles facilitate the transport and mixing of the bowel contents.


Body contractions in Hydra are triggered by nerve cells (in green), while bacteria (rod-shaped cells in red) influence the underlying pacemaker activity.

Image: Christoph Giez, Dr. Alexander Klimovich


Hydra’s nerve cells (in green) generate electrical impulses that cause contractions of muscle fibers (shown in red) in the gastric cavity wall.

Image: Christoph Giez, Dr. Alexander Klimovich

These contractions, known as peristalsis, are essential for the digestive process. With various diseases of the digestive tract, such as severe inflammatory bowel diseases in humans, there are disruptions to the normal peristalsis.

To date, very little research has explored the factors underlying the control of these contractions. Now, for the first time, a research team from the Cell and Developmental Biology (Bosch AG) working group at the Zoological Institute at Kiel University (CAU) has been able to prove that the bacterial colonisation of the intestine plays an important role in controlling peristaltic functions.

The scientists published their results yesterday - derived from the example of freshwater polyps Hydra - in the latest issue of Scientific Reports.

The triggers for the normal spontaneous contractions of the muscle tissue are so-called pacemaker cells of the nervous system. In a specific rhythm and without any external stimulation, they emit electrical impulses, that ultimately reach the smooth muscles of the intestinal wall, and cause them to contract. Although the impulses as such occur by themselves, their frequency and intensity, however, are subject to external influences.

"The example of the simple freshwater polyp Hydra has shown us that the bacterial colonisation of the organism can affect the contractions of its digestive cavity. Most likely they do so by modulating the underlying pacemaker signals," said Professor Thomas Bosch, head of the study and spokesperson for the Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms".

Unlike other more complex organisms, Hydra have no bowel in the true sense of the word. Their simple body cavity assumes, amongst other things, the function of a digestive tract; the surrounding tissue also exhibits the typical contractions associated with more highly-developed intestines.

To find out how peristalsis is regulated in the freshwater polyps, the researchers compared normal Hydra which had typical bacterial colonisation with those that had their microbiome completely removed with an antibiotic cocktail. In comparison, these organisms without bacterial colonisation - also referred to as germ-free polyps - exhibited a reduction in contractions by about half. At the same time, the rhythm of the movements became disrupted, and some of the breaks between the contractions were much longer. Thus, the absence of the typical microbiome in Hydra compromised the peristaltic movements in the body cavity.

In a further step, the scientists restored the specific bacterial colonisation in the germ-free organisms. Initially, they introduced each of the five most common bacterial species found in the Hydra microbiome individually back into the sterile polyps. It turned out that this individual bacterial colonisation has no appreciable effect on the frequency and timing of contractions. Only the joint re-introduction of the five main representatives of the microbiome led to a marked improvement in peristalsis, although even then, the pattern of contractions was not fully normalised. Interestingly, an extract produced from the colonising bacteria had a similarly positive influence.

From these observation the Kiel research team concluded that only the natural Hydra microbiome - characterised by a balance between the bacterial species present - can play an important pacemaker role in peristalsis. They discovered that, in this case, certain molecules secreted by the bacteria can intervene in the control mechanism of the pacemaker cells. As such, bacterial signals can have a decisive effect on the pattern of spontaneous peristaltic contractions. "We were able to demonstrate for the first time that in our simple model organism, the microbiome has an indispensable function in the frequency and timing of tissue contractions," emphasised Bosch.

In addition, the example of the evolutionarily ancient model organism Hydra shows us that the control of vital processes of multicellular organisms by their bacterial symbionts already originated very early in the evolution of life, continued Bosch. These ground-breaking results are especially promising for medical research: "The fundamental explanation of the cooperation between organism and microbiome in regulating peristalsis will in future help us to understand the emergence of severe diseases, which arise from disrupted movement of the intestine," summarised Bosch.

Original publication:
Andrea P. Murillo-Rincón, Alexander Klimovich, Eileen Pemöller, Jan Taubenheim, Benedikt Mortzfeld, René Augustin & Thomas C.G. Bosch (2017): “Spontaneous body contractions are modulated by the microbiome of Hydra”. Scientifc Reports, Published on 21.11.2017, https://www.nature.com/articles/s41598-017-16191-x

Photos are available to download:
http://www.uni-kiel.de/download/pm/2017/2017-368-1.gif
Caption: The typical contraction pattern of the freshwater polyp Hydra: Contraction and relaxation of the same animal over the course of three minutes.
Animation: Andrea Murillo-Rincon, Dr. Alexander Klimovich

http://www.uni-kiel.de/download/pm/2017/2017-368-2.jpg
Caption: Body contractions in Hydra are triggered by nerve cells (in green), while bacteria (rod-shaped cells in red) influence the underlying pacemaker activity.
Image: Christoph Giez, Dr. Alexander Klimovich

http://www.uni-kiel.de/download/pm/2017/2017-368-3.jpg
Caption: Hydra’s nerve cells (in green) generate electrical impulses that cause contractions of muscle fibers (shown in red) in the gastric cavity wall.
Image: Christoph Giez, Dr. Alexander Klimovich

Contact:
Prof. Thomas Bosch
Zoological Institute, Kiel University
Tel.: +49 (0)431-880-4170
E-mail: tbosch@zoologie.uni-kiel.de

More information:
Priority research area “Kiel Life Science”, Kiel University
http://www.kls.uni-kiel.de

Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms", Kiel University:
http://www.metaorganism-research.com

Cell and Developmental Biology (Bosch AG) working group,
Zoological Institute, Kiel University:
http://www.bosch.zoologie.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Press, Communication and Marketing, Dr Boris Pawlowski, Text: Christian Urban
Postal address: D-24098 Kiel, Germany, Telephone: +49 (0)431 880-2104, Fax: +49 (0)431 880-1355
E-mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni
Facebook: www.facebook.com/kieluni, Instagram: www.instagram.com/kieluni

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>