Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baboons provide new insights into the evolution of the genome

31.01.2019

A team of researchers including scientists from Vetmeduni Vienna investigated the process of evolutionary diversification by looking at six baboon species. The results of the study provide exciting new insights into the evolution of the genome – including that of humans.

Recent studies suggest that closely related species can develop significant genetic and phenotypic differences throughout their evolution despite ongoing gene flow. The findings challenge the traditional views regarding the genetics of speciation.


Analysis of the evolutionary diversification in the genome of baboons provided new insight also in human genome evolution.

© Dr. Dietmar Zinner

A new study conducted by Vetmeduni Vienna, funded by the Vienna Science and Technology Fund (WWTF) and published recently in Science Advances, analysed the genomic differentiation among six baboon species. The international research team found evidence for hybridization of ancient and recent generations among divergent species.

These results help inform the understanding of similar cases, including the complex diversification and genetic admixture among modern humans and our extinct relatives like Neanderthals, Denisovans and other hominins.

Evolutionary divergence of baboons began around 1.5 million years ago – about the same time as that of humans

Like our own genus Homo, the ancestral stock of Papio baboons began diverging into multiple lineages (phylogenetic species) within sub-Saharan Africa about 1.5 million years ago. Today’s baboons (genus Papio) are large, geographically widespread Old World monkeys which – unlike Homo – consist of six readily distinguishable species that hybridize in the wild. Like early Homo, baboon species differ in body size, morphology and behaviour.

In their study, the researchers were able to document multiple admixture events for several baboon lineages, with some episodes involving genetic exchange among lineages that persist to this day while other episodes involved extinct lineages. The diversity of baboons provides an opportunity to investigate the genomic, morphological and behavioural aspects of evolutionary radiation in a broadly successful and adaptable primate.

New insights into the evolution of the genome

Carolin Kosiol from the Institute of Population Genetics at Vetmeduni Vienna and the Centre of Biological Diversity at the University of St Andrews, explains the method employed by the international research team: “We produced a reference genome assembly for the species Papio anubis and sequence data for the whole genome for all six extant species. In a further step, we documented multiple episodes of admixture and introgression during the radiation of Papio baboons, thus demonstrating their value as a model of complex evolutionary divergence and hybridization. This provides new insights into cladogenesis in general and the nature, rate and consequences of genomic evolution in particular. Especially helpful were new genome-wide computer programs developed by my former doctoral student Dominik Schrempf.” DNA samples were obtained from both wild animals as well as captive baboons.

No significant barriers to hybridization

Studies of the hybridization revealed no significant barriers to reproduction. Even dramatic differences in the social systems do not prevent different species from hybridizing in the wild. This evidence was documented for the two species Papio anubis and Papio hamadryas, which differ significantly in their social organisation and social structure. Among Anubis baboons, both males and females are polygamous. Hamadryas societies, on the other hand, are multi-level, with “harem”-like one-male breeding units (OMUs) as basal social entities. However, there is evidence for differences in the success of mating types and a certain degree of genetic incompatibility among different baboon species.

Important context for future research – with relevant insights for humans

Baboons, in contrast to humans, can still be studied in hybrid zones today. As such, they constitute an important context for future research. Potential areas of study include the effects of genetic variation on neurotransmitter function and its impact on species-level differences in social relationships and social behaviour or the investigation of the effects of increasing genetic differentiation.

Service:
The article “The comparative genomics and complex population history of Papio baboons” by Jeffrey Rogers, Muthuswamy Raveendran, R. Alan Harris, Thomas Mailund, Kalle Leppälä, George Athanasiadis, Mikkel Heide Schierup, Jade Cheng, Kasper Munch, Jerilyn A. Walker, Miriam K. Konkel, Vallmer Jordan, Cody J. Steely, Thomas O. Beckstrom, Christina Bergey, Andrew Burrell, Dominik Schrempf, Angela Noll, Maximillian Kothe, Gisela H. Kopp, Yue Liu, Shwetha Murali, Konstantinos Billis, Fergal J. Martin, Matthieu Muffato, Laura Cox, James Else, Todd Disotell, Donna M. Muzny, Jane Phillips-Conroy, Bronwen Aken, Evan E. Eichler, Tomas Marques-Bonet, Carolin Kosiol, Mark A. Batzer, Matthew W. Hahn, Jenny Tung, Dietmar Zinner, Christian Roos, Clifford J. Jolly, Richard A. Gibbs, Kim C. Worley and the Baboon Genome Analysis Consortium was published in Science Advances.

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. The Vetmeduni Vienna plays in the global top league: in 2018, it occupies the excellent place 6 in the world-wide Shanghai University veterinary in the subject "Veterinary Science". http://www.vetmeduni.ac.at

Scientific Contact:
Carolin Kosiol, PhD
Institute of Population Genetics
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-4331
carolin.kosiol@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Wissenschaftliche Ansprechpartner:

Carolin Kosiol, PhD
Institute of Population Genetics
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-4331
carolin.kosiol@vetmeduni.ac.at

Originalpublikation:

The article “The comparative genomics and complex population history of Papio baboons” by Jeffrey Rogers, et al and the Baboon Genome Analysis Consortium was published in Science Advances.

Weitere Informationen:

https://www.vetmeduni.ac.at/en/infoservice/press-releases/press-releases-2019/ba...

Mag.rer.nat. Georg Mair | idw - Informationsdienst Wissenschaft
Further information:
https://www.vetmeduni.ac.at/en/infoservice/press-releases/press-releases-2019/baboons-provide-new-insights-into-the-evolution-of-the-genome/

More articles from Life Sciences:

nachricht Blocking the iron transport could stop tuberculosis
02.04.2020 | University of Zurich

nachricht Discovery of life in solid rock deep beneath sea may inspire new search for life on Mars
02.04.2020 | University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

EU project GALACTIC develops supply chain for Alexandrite laser crystals

02.04.2020 | Machine Engineering

FaceHaptics – Simulation for all senses in VR

02.04.2020 | Information Technology

Most of Earth's carbon was hidden in the core during its formative years

02.04.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>