Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baboons provide new insights into the evolution of the genome

31.01.2019

A team of researchers including scientists from Vetmeduni Vienna investigated the process of evolutionary diversification by looking at six baboon species. The results of the study provide exciting new insights into the evolution of the genome – including that of humans.

Recent studies suggest that closely related species can develop significant genetic and phenotypic differences throughout their evolution despite ongoing gene flow. The findings challenge the traditional views regarding the genetics of speciation.


Analysis of the evolutionary diversification in the genome of baboons provided new insight also in human genome evolution.

© Dr. Dietmar Zinner

A new study conducted by Vetmeduni Vienna, funded by the Vienna Science and Technology Fund (WWTF) and published recently in Science Advances, analysed the genomic differentiation among six baboon species. The international research team found evidence for hybridization of ancient and recent generations among divergent species.

These results help inform the understanding of similar cases, including the complex diversification and genetic admixture among modern humans and our extinct relatives like Neanderthals, Denisovans and other hominins.

Evolutionary divergence of baboons began around 1.5 million years ago – about the same time as that of humans

Like our own genus Homo, the ancestral stock of Papio baboons began diverging into multiple lineages (phylogenetic species) within sub-Saharan Africa about 1.5 million years ago. Today’s baboons (genus Papio) are large, geographically widespread Old World monkeys which – unlike Homo – consist of six readily distinguishable species that hybridize in the wild. Like early Homo, baboon species differ in body size, morphology and behaviour.

In their study, the researchers were able to document multiple admixture events for several baboon lineages, with some episodes involving genetic exchange among lineages that persist to this day while other episodes involved extinct lineages. The diversity of baboons provides an opportunity to investigate the genomic, morphological and behavioural aspects of evolutionary radiation in a broadly successful and adaptable primate.

New insights into the evolution of the genome

Carolin Kosiol from the Institute of Population Genetics at Vetmeduni Vienna and the Centre of Biological Diversity at the University of St Andrews, explains the method employed by the international research team: “We produced a reference genome assembly for the species Papio anubis and sequence data for the whole genome for all six extant species. In a further step, we documented multiple episodes of admixture and introgression during the radiation of Papio baboons, thus demonstrating their value as a model of complex evolutionary divergence and hybridization. This provides new insights into cladogenesis in general and the nature, rate and consequences of genomic evolution in particular. Especially helpful were new genome-wide computer programs developed by my former doctoral student Dominik Schrempf.” DNA samples were obtained from both wild animals as well as captive baboons.

No significant barriers to hybridization

Studies of the hybridization revealed no significant barriers to reproduction. Even dramatic differences in the social systems do not prevent different species from hybridizing in the wild. This evidence was documented for the two species Papio anubis and Papio hamadryas, which differ significantly in their social organisation and social structure. Among Anubis baboons, both males and females are polygamous. Hamadryas societies, on the other hand, are multi-level, with “harem”-like one-male breeding units (OMUs) as basal social entities. However, there is evidence for differences in the success of mating types and a certain degree of genetic incompatibility among different baboon species.

Important context for future research – with relevant insights for humans

Baboons, in contrast to humans, can still be studied in hybrid zones today. As such, they constitute an important context for future research. Potential areas of study include the effects of genetic variation on neurotransmitter function and its impact on species-level differences in social relationships and social behaviour or the investigation of the effects of increasing genetic differentiation.

Service:
The article “The comparative genomics and complex population history of Papio baboons” by Jeffrey Rogers, Muthuswamy Raveendran, R. Alan Harris, Thomas Mailund, Kalle Leppälä, George Athanasiadis, Mikkel Heide Schierup, Jade Cheng, Kasper Munch, Jerilyn A. Walker, Miriam K. Konkel, Vallmer Jordan, Cody J. Steely, Thomas O. Beckstrom, Christina Bergey, Andrew Burrell, Dominik Schrempf, Angela Noll, Maximillian Kothe, Gisela H. Kopp, Yue Liu, Shwetha Murali, Konstantinos Billis, Fergal J. Martin, Matthieu Muffato, Laura Cox, James Else, Todd Disotell, Donna M. Muzny, Jane Phillips-Conroy, Bronwen Aken, Evan E. Eichler, Tomas Marques-Bonet, Carolin Kosiol, Mark A. Batzer, Matthew W. Hahn, Jenny Tung, Dietmar Zinner, Christian Roos, Clifford J. Jolly, Richard A. Gibbs, Kim C. Worley and the Baboon Genome Analysis Consortium was published in Science Advances.

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. The Vetmeduni Vienna plays in the global top league: in 2018, it occupies the excellent place 6 in the world-wide Shanghai University veterinary in the subject "Veterinary Science". http://www.vetmeduni.ac.at

Scientific Contact:
Carolin Kosiol, PhD
Institute of Population Genetics
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-4331
carolin.kosiol@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Wissenschaftliche Ansprechpartner:

Carolin Kosiol, PhD
Institute of Population Genetics
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-4331
carolin.kosiol@vetmeduni.ac.at

Originalpublikation:

The article “The comparative genomics and complex population history of Papio baboons” by Jeffrey Rogers, et al and the Baboon Genome Analysis Consortium was published in Science Advances.

Weitere Informationen:

https://www.vetmeduni.ac.at/en/infoservice/press-releases/press-releases-2019/ba...

Mag.rer.nat. Georg Mair | idw - Informationsdienst Wissenschaft
Further information:
https://www.vetmeduni.ac.at/en/infoservice/press-releases/press-releases-2019/baboons-provide-new-insights-into-the-evolution-of-the-genome/

More articles from Life Sciences:

nachricht Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | ETH Zurich

nachricht New molecular blueprint advances our understanding of photosynthesis
15.02.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>