Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Babies can act on purpose early on – eye movements allow new insights in early child development

20.02.2012
Infants can act purposefully much earlier than developmental psychologists previously believed: At the age of six months, the brains of infants are sufficiently developed that they are able to perform targeted actions through eye movements.

Utilizing eye-trackers, the researchers measured the eye movements of infants, which the infants were using to control a computer. After they directly looked at a red dot on the screen, with a delay of 0.6 seconds a tone and an alternating animal picture was presented. Six to eight-month-old infants learned very quickly to summon the animal picture by gazing on the red “button”.


Targeted selection: Already at the age of six month babies learn fast to activate the correct virtual button. (Numbers indicate the fixation duration on the marked points in milliseconds)
Image: FIAS

And they could not get enough: Within a minute the six-month-old infants summoned the image with their eyes about 15 times. This study was performed by a research team from the Bernstein Focus Neurotechnology (BFNT) Frankfurt, the Frankfurt Institute for Advanced Studies (FIAS) and the Goethe University in Frankfurt.

This research provides new insights into early childhood brain development. Up until now, deliberate infant actions were recorded by other movements, such as pointing or by pressing a switch. The fine motor skills of the arms and legs, however, develop only at the age of eight to ten months to the extent that the children can perform such movements. Therefore, investigations were not possible at earlier ages.

The research team led by cognitive scientist Prof. Jochen Triesch (BFNT Frankfurt, FIAS, Goethe-University) and the development psychologist Professor Monika Knopf (Goethe University) has used devices for measuring the eye movements (eye tracker) of the infants, since children are able to precisely control eye movements from the age of about four months. The experiments have shown that the children use these options intentionally: After just a few trials, the children looked at the position of the screen where the new animal picture was expected to appear before it was actually there. Even on a screen with two identical-looking red buttons they soon found out which one makes the animal picture appear and looked specifically towards it – it seems as if they understood this relationship even faster and more accurately than a control group of adult subjects that performed the same test. The research results were published in the online journal "Public Library of Science One" (PLoS One).

Eye tracking enables researchers to study the targeted actions of infants before the development of fine motor skills and language. “With this method the child’s development can be investigated earlier than before,” explains Triesch, who sees prospects for further work on brain development: “Among other things, we want to know if this method is suitable for even younger babies.”

The Frankfurt Institute for Advanced Studies (FIAS) is a multidisciplinary research institution on the theoretical investigation of complex structures in nature, which was founded by the Goethe-University Frankfurt and is financed by public donors, foundations and private sponsors. In addition to brain research, computer science, biological sciences, chemistry and physics are the focus of their work.

The Bernstein Focus Neurotechnology Frankfurt is part of the National Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. The network is named after the German physiologist Julius Bernstein (1835–1917).

Original publication:
Wang Q, Bolhuis J, Rothkopf CA, Kolling T, Knopf M, Triesch J (2012): Infants in control: rapid anticipation of action outcomes in a gaze-contingent paradigm. PLoS ONE 7(2): e30884. doi:10.1371/journal.pone.0030884

http://dx.plos.org/10.1371/journal.pone.0030884

Further contact:
Prof. Jochen Triesch
triesch@fias.uni-frankfurt.de
Bernstein Focus Neurotechnology Frankfurt,
Frankfurt Institute for Advanced Studies und
Goethe-Universität Frankfurt am Main
Ruth-Moufang-Str. 1,
60438 Frankfurt am Main
Johannes Faber
Johannes.Faber@bcos.uni-freiburg.de
Press and Public Relations Officer in the
Bernstein Coordination site
Hansastr. 9a
79104 Freiburg
Weitere Informationen:
http://www.uni-frankfurt.de Goethe-Universität Frankfurt am Main
http://www.fias.uni-frankfurt.de Frankfurt Institute for Advanded Studies
http://www.bfnt-frankfurt.de Bernstein Focus Neurotechnologie Frankfurt
http://www.nncn.de Bernstein Network Computational Neuroscience

Johannes Faber | idw
Further information:
http://www.nncn.de
http://www.bernstein-netzwerk.de

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>