Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

B Cells Among Factors Leading to Brain Lesions in Multiple Sclerosis

04.09.2018

A team of researchers from UZH and USZ has shown that in multiple sclerosis, it is not only specific T cells that cause inflammation and lesions in the brain. B cells, a different type of immune cell, also play a role. These cells activate T cells in the blood. This discovery explains how new MS drugs take effect, opening up novel options for treating the disease.

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system. The body’s own immune cells attack and damage the layer that surrounds nerve cells in the brain and spinal cord, which affects their ability to communicate with each other.


In multiple sclerosis, the immune system attacks the myelin sheaths of the nerve fibres (white).

Ralwel/iStockphoto

The disease, which affects around 2.5 million people worldwide, is a common cause of disability in young adults and affects women particularly often. MS can lead to severe neurological disabilities such as sensory problems, pain and signs of paralysis.

B cells activate T cells

A team led by neurologist Roland Martin and immunologist Mireia Sospedra at the University of Zurich (UZH), the University Hospital Zurich (USZ) and researchers at the Karolinska Institute in Sweden has now discovered a key aspect in the pathogenesis of MS.

“We were able to show for the first time that certain B cells – the cells of the immune system that produce antibodies – activate the specific T cells that cause inflammation in the brain and nerve cell lesions,” says Roland Martin, Director of the Clinical Research Priority Program Multiple Sclerosis at UZH.

Novel MS drugs attack B cells

Until recently, MS research had mainly focused on T cells, or T helper cells. They are the immune system’s “guardians”, which for example sound the alarm if the organism is infected with a virus or bacteria. In about one in a 1,000 people, the cells’ ability to distinguish between the body’s own and foreign structures becomes disturbed.

The effect of this is that the misguided T cells start to attack the body’s own nerve tissue – the onset of MS. However, the T cells aren’t the sole cause of this. “A class of MS drugs called Rituximab and Ocrelizumab led us to believe that B cells also played an important part in the pathogenesis of the disease,” explains Roland Martin. These drugs eliminate B cells, which very effectively inhibits inflammation of the brain and flare-ups in patients.

B cells’ “complicity” revealed

The researchers established the role of B cells by using an experimental in-vitro system that allowed blood samples to be analyzed. The blood of people with MS revealed increased levels of activation and cellular division among those T cells attacking the body’s myelin sheaths that surround nerve cells. This was caused by B cells interacting with the T cells. When the B cells were eliminated, the researchers found that it very effectively inhibited the proliferation of T cells. “This means that we can now explain the previously unclear mechanism of these MS drugs,” says Roland Martin.

Activated T cells migrate to the brain

Moreover, the team also discovered that the activated T cells in the blood notably included those that also occur in the brain in MS patients during flare-ups of the disease. It is suspected that they cause the inflammation. Further studies showed that these T cells recognize the structures of a protein that is produced by the B cells as well as nerve cells in the brain. After being activated in the peripheral blood, the T cells migrate to the brain, where they destroy nerve tissue. “Our findings not only explain how new MS drugs take effect, but also pave the way for novel approaches in basic research and therapy for MS,” concludes Roland Martin.

Funding
The research project was mainly funded through an “ERC Advanced Grant” from the European Research Council. Further funds came from UZH’s Clinical Research Priority Program Multiple Sclerosis, the Swiss Multiple Sclerosis Society, the Swiss National Science Foundation and a number of Swedish funding instruments.

Wissenschaftliche Ansprechpartner:

Prof. Dr. med. Roland Martin
Department of Neurology
UniversityHospital Zurich
Phone: +41 44 255 11 25
E-mail: roland.martin@usz.ch

Originalpublikation:

Ivan Jelcic, Faiez Al Nimer, Jian Wang, Verena Lentsch, Raquel Planas, Ilijas Jelcic, Aleksandar Madjovski, Sabrina Ruhrmann, Wolfgang Faigle, Katrin Frauenknecht, Clemencia Pinilla, Radleigh Santos, Christian Hammer, Yaneth Ortiz, Lennart Opitz, Hans Grönlund, Gerhard Rogler, Onur Boyman, Richard Reynolds, Andreas Lutterotti, Mohsen Khademi, Tomas Olsson, Fredrik Piehl, Mireia Sospedra, and Roland Martin. Memory B Cells Activate Brain-Homing, Autoreactive CD4+ T Cells in Multiple Sclerosis. Cell. August 30, 2018. DOI: 10.1016/j.cell.2018.08.011

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2018/Multiple-Sclerosis.html

Kurt Bodenmüller | Universität Zürich

More articles from Life Sciences:

nachricht Blocking the iron transport could stop tuberculosis
02.04.2020 | University of Zurich

nachricht Discovery of life in solid rock deep beneath sea may inspire new search for life on Mars
02.04.2020 | University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Scientists see energy gap modulations in a cuprate superconductor

02.04.2020 | Physics and Astronomy

AI finds 2D materials in the blink of an eye

02.04.2020 | Information Technology

New 3D cultured cells mimic the progress of NASH

02.04.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>