Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autologous bone marrow-derived mononuclear cell transplants can reduce diabetic amputations

19.04.2012
Autologous (self-donated) mononuclear cells derived from bone marrow (BMMNCs) have been found to significantly induce vascular growth when transplanted into patients with diabetes who are suffering from critical limb ischemia caused by peripheral artery disease (PAD), a complication of diabetes.

The team of researchers in Seville, Spain who carried out the study published their results in a recent issue of Cell Transplantation (20:10), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

"Critical limb ischemia in diabetic patients is associated with high rates of morbidity and mortality; however, neovascularization induced by stem cell therapy could be a useful approach for these patients," said study corresponding author Dr. Bernat Soria of the Andaluz Center for Biologic and Molecular Regenerative Medicine in Seville, Spain. "In this study we evaluated the safety and efficacy of inter-arterial administration of autologous bone marrow-derived mononuclear cells with 20 diabetic patents with severe below-the-knee arterial ischemia."

The researchers noted that surgical or endovascular revascularization options for patients such as those in the study are limited because of poor arterial outflow. Although optimum dose, source and route of administration were outstanding questions, proper BMMNC dose for best results was an issue that the researchers hoped to clarify. They subsequently used a dose ten times smaller than other researchers had used previously in similar studies.

According to the authors, the rationale for their study was that intra-arterial infusions of autologous BMMNCs contain endothelial progenitors that are locally profuse at severely diseased vascular beds in the lower limb. Their hope was that the BMMNCs could promote early and effective development of new vascularization.

Patients were evaluated at three months and twelve months post-transplantation.

"As previously reported, the one-year mortality rate for diabetic patients with PAD - most of which are associated with cardiac complications - has been found to be 20 percent," explained Dr. Soria. "Our study documented significant increases in neovasculogenesis for the majority of our study patients and a decrease in the number of amputations. However, overall PAD mortality for our patients was similar to that generally experienced."
The researchers concluded that BMMNC therapy for lower limb ischemia was a "safe procedure that generates a significant increase in the vascular network in ischemic areas" and promotes "remarkable clinical improvement."

"While this study did not demonstrate a significant effect on mortality, it does suggest an improvement in the quality of life based on limb retention as shown by the significant reduction in the number of amputations", said Amit N. Patel, director of cardiovascular regenerative medicine at the University of Utah and section editor for Cell Transplantation.

Contact: Dr. Bernat Soria, Centro Anduluz de Biologica Molecular Medicine Regenerative, Americo Vespucio s/n, 41092 Sevilla, Spain.
Tel. (+34) 954468004
Fax. (+34) 954461664
Email bernat.soria@cabimer.es
Citation: Ruiz-Salmeron, R.; de la Cuesta-Diaz, A.; Constantino-Bermejo, M.; Pérez-Camacho, I.; Marcos-Sánchez, F.; Hmadcha, A.; Soria, B. Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia.Cell Transplant. 20(10):1629-1639; 2011.

The editorial offices for Cell Transplantation are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News release by Florida Science Communications www.sciencescribe.net

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct/

More articles from Life Sciences:

nachricht Happy hour for time-resolved crystallography
17.09.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Too much of a good thing: overactive immune cells trigger inflammation
16.09.2019 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>