Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic structure of the mammalian "fatty acid factory" determined

05.09.2008
Mammalian fatty acid synthase is one of the most complex molecular synthetic machines in human cells. It is also a promising target for the development of anti-cancer and anti-obesity drugs and the treatment of metabolic disorders.

Now researchers at ETH Zurich have determined the atomic structure of a mammalian fatty acid synthase. Their results have just been published in Science magazine.

Synthesis of fatty acids is a central cellular process that has been studied for many decades. Fatty acids are used in the cell as energy storage compounds, messenger molecules and building blocks for the cellular envelope. Until now, individual steps of this process have been investigated using isolated bacterial enzymes. However, in higher organisms - except plants - fatty acid synthesis is catalyzed by large multifunctional proteins where many individual enzymes are brought together to form a "molecular assembly line".

The atomic structure is the result of many years of research

As described in this week's issue of "Science" magazine, researchers at ETH Zurich, supported by the National Centre of Excellence in Research (NCCR) in Structural Biology at the Swiss National Science Foundation, determined the high-resolution structure of a mammalian fatty acid synthase using data collected at the Swiss Light Source (SLS) of the Paul Scherrer Institute (PSI) in Switzerland. These results crown the efforts begun in 2001 to determine the detailed structures of fatty acid synthases in higher organisms by a relatively small group of scientists at ETH Zurich. The group, consisting of Timm Maier, Marc Leibundgut and Simon Jenni in the laboratory of Prof. Nenad Ban, published their first papers describing architectures of fungal and mammalian fatty acid synthases two years ago. That was followed last year by two papers on the atomic structures of fungal fatty acid synthases and the mechanism of substrate shuttling and delivery in these multi-enzymes. Now this latest publication describes the atomic structure of the mammalian fatty acid synthase. These results reveal the details of all catalytic active sites responsible for iterative fatty acid synthesis and show how the flexibility of this large multi-enzyme is used for transferring substrates from one enzymatic active site to the next. The structure can be considered a milestone for future research in the field.

Fatty acid synthases as drug targets?

In addition to the fundamental scientific interest in the function of this multi-enzyme that plays a central role in primary metabolism, mammalian fatty acid synthase is also considered a promising drug target. Although most fat accumulated in animals and humans is delivered to cells by ingestion and not by de novo synthesis, compounds that inhibit the function of the mammalian fatty acid synthase induce weight reduction in animals, showing potential for the treatment of obesity and obesity-related diseases, such as diabetes and coronary disorders. Furthermore, due to the increased requirement for fatty acid synthesis in cancer cells, inhibitors of this enzyme have anti-tumor activity, making fatty acid synthase an attractive drug target for anti-cancer therapy.

Multi-enzymes: the ultimate organic chemists

Mammalian fatty acid synthase belongs to a large family of multi-enzymes, some of which are responsible for the synthesis of complex natural products with antibiotic, anti-cancer, anti-fungal and immunosuppressive properties that are of outstanding medical relevance. The structure of mammalian fatty acid synthase reveals how different catalytic domains are excised or inserted in various members of this family to yield multi-enzymes capable of synthesizing a large variety of chemical products. The structure will facilitate the design of molecular assembly lines for the production of improved compounds. In particular, the engineering of novel multi-enzymes for the production of modified antibiotics is important in the fight against resistant strains of bacteria.

Further information:

ETH Zurich
Professor Nenad Ban
Institute of Molecular Biology and Biophysics
Phone: +41 44 633 27 85
nenad.ban@mol.biol.ethz.ch

Roman Klingler | idw
Further information:
http://www.ethz.ch

More articles from Life Sciences:

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

nachricht How do muscles know what time it is?
21.08.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

Researchers discover link between magnetic field strength and temperature

21.08.2018 | Physics and Astronomy

IHP technology ready for space flights

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>