Atomic layer 3D printing

Not only is current lithography slow, it also wastes materials and energy, is poorly adapted to combining a large number of distinct materials, and extremely costly in terms of capital expenses.

A team of scientists and engineers led by Prof. Julien Bachmann from FAU plan to combine the expertise of the various consortium partners in the chemical control of ultrathin coatings (“atomic layer deposition”), in gas delivery, microelectromechanical devices, and microprocessing and automation, in order to demonstrate the potential of “atomic-layer 3D printing”, that is, the generation of arbitrary shapes with a vertical resolution in the order of one atom (or a tenth of one nanometer).

The consortium includes the companies ATLANT 3D Nanosystems, Femtika, and SEMPA Systems as well as the Institute of Electrical Engineering of the Slovak Academy of Sciences and FAU, and will be funded by approximately 3 million euros over a period of two years in the framework of the European Union’s “Fast Track to Innovation” programme.

The goal of the project is to design, build and test an industrial prototype of the atomic-layer 3D printer that can then be sold commercially.

Further information
Prof. Dr. Julien Bachmann
julien.bachmann@fau.de

Media Contact

Dr. Susanne Langer idw - Informationsdienst Wissenschaft

More Information:

http://www.fau.de/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors