Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic Design by Water

23.02.2018

Scientists at the Max-Planck-Institut für Eisenforschung show how geometric structures at surfaces can be formed with atomic precision by water

A central element in such diverse technological problems as corrosion protection, battery materials or hydrogen production via electrolysis or fuel cells is the contact between two conducting elements – the electrolyte and the solid electrode at which a voltage is applied.


Water shapes the surface which is completely smooth in vacuum. Geometric structures, as the triangle on the left appear under the influence of water. Grey represent zinc, red oxygen and blue hydrogen

Suhyun Yoo, Max-Planck-Institut für Eisenforschung GmbH

Despite its importance for a multitude of key technologies hardly anything is known about the atomistic structure of the interface between the electrode and the electrolyte. In particular the atomic structure of the solid electrode has a decisive impact on the chemical reactions taking place at the interface.

The ability to selectively modify the structure of the surface at the scale of individual atoms would open completely new possibilities target and influence central chemical reactions.

Scientist from the Computational Materials Design department of the Max-Planck-Institut für Eisenforschung have come a great deal closer to achieving this goal. Within the framework of the Excellence-cluster RESOLV, a joint research initiative of seven research institutions in the Ruhr area, an unexpected phenomenon was found with the help of highly accurate quantum mechanical methods and powerful supercomputers.

Previous studies of metallic surfaces repeatedly show that the structure of the surface hardly changes in contact with a liquid electrolyte. The researchers were therefore very surprised when they brought a semi-conducting surface into contact with an electrolyte.

“We were completely surprised to see the formation of structures, which are unstable in the absence of water and are also not observed”, says Dr. Mira Todorova, head of the Electrochemistry and Corrosion group. The department head Prof. Neugebauer is equally enthusiastic:

“Our simulation methods allowed us not only to find a completely new and unexpected phenomenon, but also to identify the underlying mechanisms. This opens up totally new possibilities to shape and design surfaces with atomic precision.”

These studies not only offer new insights into future-oriented technologies, but also provide a new perception of a question intensely discussed in geology: The cause of the enhanced crack formation in minerals when they are exposed to a humid environment.

The work was published in the journal Physical Review Letters.

Original publication:
S. Yoo, M. Todorova and J. Neugebauer
Selective solvent-induced stabilization of polar oxide surfaces in an electrochemical environment
Physical Review Letters 120, 066101 (2018)
DOI: 10.1103/PhysRevLett.120.066101
(Editors suggestion)

Authors of the press release: M. Todorova, J. Neugebauer

Weitere Informationen:

https://www.mpie.de/3757594/atomic-design-by-water

Yasmin Ahmed Salem M.A. | Max-Planck-Institut für Eisenforschung GmbH

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>