Astrocytes affect brain´s information signalling

“Our results contribute to the insight that astrocytes can affect how the brain processes and stores information,” says My Andersson, a researcher from the Department of Physiology at the Institute of Neuroscience and Physiology. “This means that astrocytes should be given more attention in future when looking for causes of diseases that affect signalling between neurons, such as epilepsy.”

Besides neurons, the brain consists of a large number of astrocytes. These have previously been viewed primarily as the brain’s housekeeping cells, whose roles include regulating blood flow in different parts of the brain. Previous research has also shown that astrocytes can respond to and communicate with neurons.

Our personality, thoughts and emotions are created by activity in different networks of nerve cells in the brain.

“This activity takes the form of electrical impulses which are transmitted between neurons via synapses,” says Andersson. “In the synapses, transmitter substances are released, the most common being the amino acid glutamate, which helps to transfer signals from one neuron to another.”

In studies of rats, the researchers were able to measure flows from the synapses in the hippocampus, a part of the brain that is important for memory and learning. They found that astrocytes affect how effectively signals are transferred between the synapses and how this signalling changes over time. What happens is that the astrocytes sense activity from the synapses and respond by reducing the release of glutamate.

The researchers’ discovery could lead to a whole new understanding of how the transfer of information between synapses is regulated, and of the importance of astrocytes in this process.

For more information, please contact:
Researcher My Andersson, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, tel: +46 (0)31 786 3517, mobile: +46 (0)736 753537, e-mail:my.andersson@physiol.gu.se

Professor Eric Hanse, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, tel:+46 (0)31 786 3510, mobile: +46 (0)733 823424, e-mail: eric.hanse@physiol.gu.se

Journal: Journal of Neuroscience, Apr 2010; 30: 5776 – 5780
Title of article: Astrocytes Impose Postburst Depression of Release Probability at Hippocampal Glutamate Synapses

Authors: My Andersson and Eric Hanse

Media Contact

Helena Aaberg idw

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors