Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asian dust providing key nutrients for California's giant sequoias

28.03.2017

Researchers find that dust from the Gobi Desert is providing more phosphorus than previously thought for plants in the Sierra Nevadas

Dust from as far away as the Gobi Desert in Asia is providing more nutrients than previously thought for plants, including giant sequoias, in California's Sierra Nevada mountains, a team of scientists, including several from the University of California, Riverside, have found.


Researchers made this device with a bundt pan and marbles to capture dust.

Credit: Chelsea Carey

The scientists found that dust from the Gobi Desert and the Central Valley of California contributed more phosphorus for plants in the Sierra Nevadas than bedrock weathering, which is breaking down of rock buried beneath the soil. Phosophorus is one of the basic elements that plants need to survive, and the Sierra Nevadas are considered a phosphorus-limited ecosystem.

"In recent years it has been a bit of mystery how all these big trees have been sustained in this ecosystem without a lot of phosphorus in the bedrock," said Emma Aronson, an assistant professor of plant pathology and microbiology at UC Riverside. "This work begins to unravel that mystery and show that dust may be shaping this iconic California ecosystem."

Aronson is a co-author of a just-published paper in the journal Nature Communications about the research. Two other scientists with UC Riverside ties are co-authors: Chelsea Carey, a former post-doctoral researcher in Aronson's lab; and Jon Botthoff, a field technician at the university's Center for Conservation Biology.

The study may help scientists predict the impacts of climate change which is expected to increase drought and create more desert conditions around the world, possibly including California. If that happens, based on these findings, scientists expect a lot more dust moving in the atmosphere, and likely bringing phosphorus and important nutrients to far flung mountainous ecosystems.

Nutrients such as carbon, nitrogen and phosphorus regulate the distribution of life across Earth's surface. Therefore it is important to understand the different sources of nutrients, including underlying bedrock and wind-spread dust. Quantifying the importance of dust, which is sensitive to changes in climate and land use, is crucial for predicting how ecosystems will respond to global warming and greater use of the land.

Little is known about the role of dust in mountainous forest ecosystems, such as the Sierra Nevadas. To change that, the researchers quantified the relative importance of dust and bedrock in ecosystem nutrient supply across four sites of increasing elevation, from about 1,300 to 8,800 feet, in the Sierra Nevadas, just east of Merced.

They then combined dust they collected with existing erosion data at the same location. They captured the dust using homemade dust collectors, which consisted of non-stick bundt pans filled with glass marbles to keep the dust from blowing out. The pans were attached to 6-foot poles to prevent dust kicked up by the researchers from entering the pans.

The researchers studied the isotopic signatures in several elements in the dust to determine the place of origin of the dust. The isotopes act a fingerprint for source of origin.

The percentage of Asian dust ranged from 20 percent on average at the lowest elevation, to 45 percent on average at the highest elevation. The percentages were higher at the higher elevation sites because dust tends to travel high in the air stream and not fall unless it hits an object, such as a mountain.

The researchers found that the amount of dust from Central Valley sources was greater at lower elevations compared to higher elevations. That was expected, but they also found that more Central Valley dust was entering higher elevations later in the dry season than just after the spring rains.

"Considering we took our measurements in 2014, in the middle of the drought, this makes us think that the drought is a factor here." Aronson said.

The researchers believe their findings will hold true for other mountainous ecosystems around the world and have implications for predicting forest response to changes in climate and land use.

###

They conducted the field work in one of the nine National Science Foundation Critical Zone Observatories, which are environmental laboratories focused on interconnected chemical, physical and biological processes. The research was supported by the National Science Foundation.

The Nature Communications paper is called "Dust outpaces bedrock in nutrient supply to montane forest ecosystems." In addition to Aronson, Carey and Botthoff, the authors are: Sarah Aciego, Molly Blakowski and Sarah Aarons, all of the University of Michigan; Stephen Hart and Nicholas Dove, both of UC Merced; and Cliff Riebe and Kenneth Sim, both of the University of Wyoming.

Media Contact

Sean Nealon
sean.nealon@ucr.edu
951-827-1287

 @UCRiverside

http://www.ucr.edu 

Sean Nealon | EurekAlert!

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>