Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificially produced cells communicate with each other: Models of life

17.01.2019

Friedrich Simmel und Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, exchange small chemical signaling molecules to trigger more complex reactions, such as the production of RNA and other proteins.

Scientists around the world are working on creating artificial, cell-like systems that mimic the behavior of living organisms. Friedrich Simmel and Aurore Dupin have now for the first time created such artificial cell assemblies in a fixed spatial arrangement. The highlight is that the cells are able to communicate with each other.


Signal molecules (blue) spread in the artificial cell structure and allow communication through the membranes.

Image: A. Dupin / TUM


First author Aurore Dupin and Prof. Friedrich Simmel at the fluorescence microscope.

Image: U. Benz / TUM

“Our system is a first step towards tissue-like, synthetic biological materials that exhibit complex spatial and temporal behavior in which individual cells specialize and differentiate themselves, not unlike biological organisms,” explains Friedrich Simmel, Professor of Physics of Synthetic Biosystems (E14) at TU Munich.

Gene expression in a fixed structure

Gels or emulsion droplets encapsulated in thin fat or polymer membranes serve as the basic building blocks for the artificial cells. Inside these 10 to 100 micron sized units, chemical and biochemical reactions can proceed uninhibited.

The research team used droplets enclosed by lipid membranes and assembled them into artificial multicellular structures called "micro-tissues". The biochemical reaction solutions used in the droplets can produce RNA and proteins, giving the cells a of a kind of gene expression ability.

Signal exchange and spatial differentiation of cells

But that's not all: Small "signal molecules" can be exchanged between cells via their membranes or protein channels built into the membranes. This allows them to temporally and spatially couple with each other. The systems thus become dynamic – as in real life.

Chemical pulses thus propagate through the cell structures and pass on information. The signals can also act as triggers, allowing initially identical cells to develop differently.

"Our system is the first example of a multicellular system in which artificial cells with gene expression have a fixed arrangement and are coupled via chemical signals. In this way, we achieved a form of spatial differentiation, "says Simmel.

Models, mini factories and microsensors

Developing these kinds of synthetic systems is important since they allow scientists to investigate fundamental questions about the origins of life in a model. Complex organisms became possible only after cells began specializing and distributing work between cooperating cells. How this came about is among the most fascinating questions in basic research.

Using a modular construction kit of tailor-made cell systems, the researchers hope to simulate various properties of biological systems in the future. The idea is that cells react to their environment and learn to act independently.

The first applications are already on the horizon: In the long term, artificial cell assemblies can be deployed as mini-factories to produce specific biomolecules, or as tiny micro-robot sensors that process information and adapt to their environments.

Cells from a 3-D printer

Friedrich Simmel and Aurore Dupin still assemble their cell systems manually using micromanipulators. In the future, however, they plan to cooperate with the Munich University of Applied Sciences, for example, to systematically build larger and more lifelike systems using 3-D printing technology.

Further information:

This work was funded by the European Research Council and the DFG Cluster of Excellence Nanosystems Initiative Munich (NIM). Aurore Dupin was supported by the DFG Research Training Group "Chemical Foundations of Synthetic Biology".

Wissenschaftliche Ansprechpartner:

Prof. Dr. Friedrich C. Simmel
Technical University of Munich
Physics of Synthetic Biological Systems
Am Coulombwall 4a, 85748 Garching, Germany
Tel.: +49 89 289 11610 – E-Mail: simmel@tum.de
Web: http://www.e14.ph.tum.de/en/home/

Originalpublikation:

Signalling and differentiation in emulsion-based multi-compartmentalized in vitro gene circuits

Aurore Dupin and Friedrich C. Simmel 
 Nature Chemistry, 26.11.2018 – DOI: 10.1038/s41557-018-0174-9

Link: https://www.nature.com/articles/s41557-018-0174-9

Nature “Behind the paper”: https://chemistrycommunity.nature.com/users/189114-aurore-dupin/posts/40976-sign...

Nature “News & Views”: https://www.nature.com/articles/s41557-018-0192-7

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/35181/ Link to the press release

Dr. Ulrich Marsch | Technische Universität München

More articles from Life Sciences:

nachricht Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | ETH Zurich

nachricht New molecular blueprint advances our understanding of photosynthesis
15.02.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>