Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial enzyme removes natural poison

27.08.2010
First example of Chemzyme functioning as antidote

For the first time ever, a completely man-made chemical enzyme has been successfully used to neutralise a toxin found naturally in fruits and vegetables.

Proof of concept for artificial enzymes

Chemzymes are designed molecules emulating the targeting and efficiency of naturally occurring enzymes and the recently graduated Dr. Bjerre is pleased about her results.

"Showing that these molecules are capable of decomposing toxins required vast amounts of work and time. But it's been worth every minute because it proves the general point that it's possible to design artificial enzymes for this class of task", explains Bjerre.

Simple molecules performing complex tasks

Most people know enzymes as an ingredient in detergents. In our bodies enzymes are in charge of decomposing everything we eat, so that our bodies can absorb the nutrients. But they also decompose ingested toxins, ensuring that our bodies survive the encounter.

In several important aspects artificial enzymes function in the same way as naturally occurring ones. But where natural enzymes are big and complex, the artificial ones have been pared down to the basics.

The flat-nosed plier of the molecular world

One consequence of this simplicity is that designing chemzymes for targeted tasks ought to be easier. With fewer parts, there's less to go wrong when changing the structure of chemzymes. And for enzymes as well as for their artificial counterparts even small changes in structure will have massive consequences for functionality.

In this, enzymes are very much like hand-tools, where scissors and flat nosed pliers, though almost identical, have very different duties.

Hardwearing replacement enzymes

Even though naturally occurring enzymes are several orders of magnitude smaller than flat-nosed pliers, they are still unrivalled tools. Some of the fastest chemical reactions blast off when enzymes are added to the broth.

Several known enzymes in the body catalyze more than one million reactions per second when they decompose compounds. There's just one drawback to enzymes. They are extremely fragile.

If an enzyme in our body was to be warmed above sixtyfive degrees centigrade or subjected to organic solvents, they would immediately denature. They would unravel and stop functioning.

Taking the heat

So far no one has succeeded in designing chemzymes that are anywhere near as fast as their naturally occurring cousins. But they are far more resilient.

Manmade enzymes take on heat and solvents without batting a molecular eyelid. One of the consequences of this is that chemzymes can be mass-produced using industrial chemical processes. This is a huge advantage when you need a lot of product in a hurry.

Factory-made enzymes

Producing natural enzymes in industrial settings is considerably more time-consuming because they have to be grown. Rather like one grows apples or grain.

So the robust and designable compounds may turn out to be just what's needed for a wide variety of jobs. Not least in the pharmaceutical industries, where the need is massive for chemical compounds which can solve problems that no amount of designing could ever tweak the natural ones to work on, which are unaffected by industrial processes, and to top it of, cheap to produce.

Jes Andersen | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>