Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial DNA can control release of active ingredients from drugs

28.06.2019

A drug with three active ingredients that are released in sequence at specific times: Thanks to the work of a team at the Technical University of Munich (TUM), what was once a pharmacologist's dream is now much closer to reality. With a combination of hydrogels and artificial DNA, nanoparticles can be released in sequence under conditions similar to those in the human body.

It is becoming much more common for patients to be treated with several different medications. It is often necessary for the patient to take them at fixed intervals – a limitation that makes everyday life difficult and increases the risk of doses being skipped or forgotten.


Prof. Oliver Lieleg and PhD student Ceren Kimna

Uli Benz / TUM


Prof. Oliver Lieleg uses models to visualize how nanoparticles are bound together by DNA fragments. Such connections may become the basis of drugs that release their active ingredients in sequence.

Uli Benz / TUM

Oliver Lieleg, a professor of biomechanics and a member of the Munich School of BioEngineering at TUM, and doctoral candidate Ceren Kimna have now developed a process that could serve as the basis for medications containing several active ingredients that would reliably release them in the body in a pre-defined sequence at specified times.

"For example, an ointment applied to a surgical incision could release pain medication first, followed by an anti-inflammatory drug and then a drug to reduce swelling," explains Oliver Lieleg.

One active ingredient after the other

"Ointments or creams releasing their active ingredients with a time delay are not new in themselves," says Oliver Lieleg. With the drugs currently in use, however, there is no guarantee that two or more active ingredients will not be released into the organism simultaneously.

To test the principle behind their idea, Oliver Lieleg and Ceren Kimna used nanometer-sized silver, iron oxide and gold particles embedded in a special gel-like substance known as a hydrogel. They then used a spectroscopic method to track the exit of the particles from the gel.

The particles selected by the researchers have similar motion characteristics within the gel to the particles used to transport real active ingredients, but are easier and cheaper to make.

The special ingredient controlling the nanoparticles is artificial DNA. In nature, DNA is above all the carrier of genetic information. However, researchers are increasingly exploiting another property: The ability of DNA fragments to be combined with great accuracy, both in terms of the types of bonds and their strength, for example to build machines on a nanometer scale.

The DNA cascade: compress and then release at the right instant

The silver particles were released first. In the initial state, the particles were bound together by DNA fragments designed by Lieleg and Kimna using special software. The resulting particle clusters are so large that they are unable to move in the hydrogel. However, when a saline solution is added, they separate from the DNA. They can now move in the gel and drift to the surface.

“Because the saline solution has approximately the same salinity as the human body, we were able to simulate conditions where the active ingredients would not be released until the medication is applied,” explains Ceren Kimna.

The mesh-like DNA structure surrounding the iron oxide particles consists of two types of DNA: The first has one end attached to the iron oxide particles. The second type is attached to the loose ends of the first type. These structures are not affected by the saline solution.

The iron oxide particles can only be released when the first clusters have dissolved. This event releases not only the silver nanoparticles, but also DNA, which eliminates the “connection DNA” of the second cluster without forming connections itself. As a result, the iron oxide particles can separate. This releases DNA fragments which in turn act as the key to the third DNA-nanoparticle combination.

“The consistency of ointments makes them the most obvious solution for a hydrogel-based approach. However, this principle also has the potential to be used in tablets that could release several effective ingredients in the body in a specific order,” explains Prof. Lieleg.

More information:

Prof. Lieleg’s lab is part of the Munich School of BioEngineering (MSB). This interdisciplinary TUM research center is Europe’s most multi-disciplinary university institution focused on the interface between medicine, engineering and natural sciences.

Professorship of Biomechanics: https://www.mw.tum.de/en/bme/
Munich School of Bioengineering: https://www.bioengineering.tum.de

High-resolution images:

https://mediatum.ub.tum.de/1507414

Wissenschaftliche Ansprechpartner:

Prof. Dr. Oliver Lieleg
Technical University of Munich
Professorship for Biomechanics
Munich School of BioEngineering
oliver.lieleg@tum.de
Tel: +49 89 289 10952

Originalpublikation:

Ceren Kimna, Oliver Lieleg, Engineering an orchestrated release avalanche from hydrogels using DNA-nanotechnology, Journal of Controlled Release, Volume 304, 28 June 2019, Pages 19-28, DOI: 10.1016/j.jconrel.2019.04.028

Dr. Ulrich Marsch | Technische Universität München
Further information:
http://www.tum.de

Further reports about: Biomechanics DNA DNA fragments Nanoparticles TUM hydrogel iron oxide iron oxide particles

More articles from Life Sciences:

nachricht Identifying the blind spots of soil biodiversity
04.08.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht AI & single-cell genomics
04.08.2020 | Helmholtz Zentrum München - German Research Center for Environmental Health

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>