Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial DNA can control release of active ingredients from drugs

28.06.2019

A drug with three active ingredients that are released in sequence at specific times: Thanks to the work of a team at the Technical University of Munich (TUM), what was once a pharmacologist's dream is now much closer to reality. With a combination of hydrogels and artificial DNA, nanoparticles can be released in sequence under conditions similar to those in the human body.

It is becoming much more common for patients to be treated with several different medications. It is often necessary for the patient to take them at fixed intervals – a limitation that makes everyday life difficult and increases the risk of doses being skipped or forgotten.


Prof. Oliver Lieleg and PhD student Ceren Kimna

Uli Benz / TUM


Prof. Oliver Lieleg uses models to visualize how nanoparticles are bound together by DNA fragments. Such connections may become the basis of drugs that release their active ingredients in sequence.

Uli Benz / TUM

Oliver Lieleg, a professor of biomechanics and a member of the Munich School of BioEngineering at TUM, and doctoral candidate Ceren Kimna have now developed a process that could serve as the basis for medications containing several active ingredients that would reliably release them in the body in a pre-defined sequence at specified times.

"For example, an ointment applied to a surgical incision could release pain medication first, followed by an anti-inflammatory drug and then a drug to reduce swelling," explains Oliver Lieleg.

One active ingredient after the other

"Ointments or creams releasing their active ingredients with a time delay are not new in themselves," says Oliver Lieleg. With the drugs currently in use, however, there is no guarantee that two or more active ingredients will not be released into the organism simultaneously.

To test the principle behind their idea, Oliver Lieleg and Ceren Kimna used nanometer-sized silver, iron oxide and gold particles embedded in a special gel-like substance known as a hydrogel. They then used a spectroscopic method to track the exit of the particles from the gel.

The particles selected by the researchers have similar motion characteristics within the gel to the particles used to transport real active ingredients, but are easier and cheaper to make.

The special ingredient controlling the nanoparticles is artificial DNA. In nature, DNA is above all the carrier of genetic information. However, researchers are increasingly exploiting another property: The ability of DNA fragments to be combined with great accuracy, both in terms of the types of bonds and their strength, for example to build machines on a nanometer scale.

The DNA cascade: compress and then release at the right instant

The silver particles were released first. In the initial state, the particles were bound together by DNA fragments designed by Lieleg and Kimna using special software. The resulting particle clusters are so large that they are unable to move in the hydrogel. However, when a saline solution is added, they separate from the DNA. They can now move in the gel and drift to the surface.

“Because the saline solution has approximately the same salinity as the human body, we were able to simulate conditions where the active ingredients would not be released until the medication is applied,” explains Ceren Kimna.

The mesh-like DNA structure surrounding the iron oxide particles consists of two types of DNA: The first has one end attached to the iron oxide particles. The second type is attached to the loose ends of the first type. These structures are not affected by the saline solution.

The iron oxide particles can only be released when the first clusters have dissolved. This event releases not only the silver nanoparticles, but also DNA, which eliminates the “connection DNA” of the second cluster without forming connections itself. As a result, the iron oxide particles can separate. This releases DNA fragments which in turn act as the key to the third DNA-nanoparticle combination.

“The consistency of ointments makes them the most obvious solution for a hydrogel-based approach. However, this principle also has the potential to be used in tablets that could release several effective ingredients in the body in a specific order,” explains Prof. Lieleg.

More information:

Prof. Lieleg’s lab is part of the Munich School of BioEngineering (MSB). This interdisciplinary TUM research center is Europe’s most multi-disciplinary university institution focused on the interface between medicine, engineering and natural sciences.

Professorship of Biomechanics: https://www.mw.tum.de/en/bme/
Munich School of Bioengineering: https://www.bioengineering.tum.de

High-resolution images:

https://mediatum.ub.tum.de/1507414

Wissenschaftliche Ansprechpartner:

Prof. Dr. Oliver Lieleg
Technical University of Munich
Professorship for Biomechanics
Munich School of BioEngineering
oliver.lieleg@tum.de
Tel: +49 89 289 10952

Originalpublikation:

Ceren Kimna, Oliver Lieleg, Engineering an orchestrated release avalanche from hydrogels using DNA-nanotechnology, Journal of Controlled Release, Volume 304, 28 June 2019, Pages 19-28, DOI: 10.1016/j.jconrel.2019.04.028

Dr. Ulrich Marsch | Technische Universität München
Further information:
http://www.tum.de

Further reports about: Biomechanics DNA DNA fragments Nanoparticles TUM hydrogel iron oxide iron oxide particles

More articles from Life Sciences:

nachricht Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system
20.09.2019 | Technische Universität München

nachricht Moderately Common Plants Show Highest Relative Losses
20.09.2019 | Universität Rostock

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>