Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Like an Arrow: Jumping Insects use Archery Techniques

30.09.2008
Froghoppers, also known as spittlebugs, are the champion insect jumpers, capable of reaching heights of 700 mm - more than 100 times their own body length.

Research published today in the open access journal BMC Biology reveals that they achieve their prowess by flexing bow-like structures between their hind legs and wings and releasing the energy in one giant leap in a catapult-like action.

Froghoppers are well distributed around the world. Images of the insects flexing and jumping are described in the research carried out by Malcolm Burrows from the University of Cambridge and his colleagues. Burrows’ research focused on determining how the energy generated by the insects’ muscles is stored before powering a jump.

He said, “A froghopper stores energy by bending a paired bow-shaped part of its internal skeleton called a ‘pleural arch’ which is a composite structure made of layers of hard cuticle and a rubbery protein called resilin. When the froghopper contracts its muscles to jump, these arches flex like a composite archery bow, and then on recoil catapult it forwards with a force that can be over 400 times its body mass”.

There are further parallels with the jumping mechanisms of froghoppers and the design of composite bows used in archery. The composite of a hard and an elastic material means that the skeleton of a froghopper, or an archery bow, can resist damage even if they are bent for a long time. Froghoppers are observed to hold the pleural arch in a bent 'ready position', ready to jump at a moment's notice, and to be able to jump repeatedly without damaging the body.

Still more advantages of using composite structures when storing large amounts of energy are seen when considering the development of these storage structures. Froghopper nymphs live in a protective white foam, the familiar cuckoo spit that appears on plants in spring. These nymphs have no resilin in their pleural arches and don’t jump until they complete the lifecycle and develop into adult Froghoppers.

Graeme Baldwin | alfa
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>