Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are females glamorous because males are?

05.11.2015

The higher ornamentation of males is usually explained by sexual selection. However, there are also many highly ornamented females.

Scientists from the Max Planck Institute for Ornithology and colleagues quantified plumage colour of almost 6000 species of passerine birds and found that selection acts on the ornamentation of both sexes, even in opposite direction.


Male Olive-backed Sunbird (Cinnyris jugularis). This species is found from southern China to the Philippines and from Malaysia to northeastern Australia.

Kaspar Delhey


Pair of White-winged fairywren (Malurus leucopterus) from Australia.

Kaspar Delhey

Strong sexual selection on males led to an increase in their plumage colouration, but also to a more pronounced reduction in female ornamentation. The researchers found colourful females predominantly in larger species, in species living in the tropics and in cooperatively breeding species.

Sperm is small and cheap and eggs are large and expensive – this fact of life is the reason why females invest more in their offspring than males, and why males have to compete and females can be choosy.

Ornamental traits such as plumage colour may signal a male’s competitiveness or attractiveness to the opposite sex, and therefore ornamented males will enjoy higher reproductive success. Sexual selection will thus lead to increased male ornamentation.

But how then can it be explained that females of many species are also highly ornamented? A widely held view is that female ornamentation is a side-effect of selection on males. Under strong sexual selection, males should become more ornamented, and because females inherit the same genes, they will become more ornamented as well.

However, often both sexes compete for resources such as food and territories, and plumage ornamentation could be advantageous in this competition for females as well. Birds are ideal to study this: they show extraordinary variation in plumage colouration in both sexes, with males being more colourful than females, with both sexes looking alike or with females being the more colourful sex.

To answer the question of which selective forces act on plumage colouration in males and females, a team of researchers from the Max Planck Institute for Ornithology in Seewiesen together with colleagues in New Zealand, Canada, and Australia quantified plumage colour of males and females in almost 6000 species of passerine birds, listed in the “Handbook of the birds of the World”.

The scientists found the colour elaboration of males being highly correlated with that of females, suggesting that there are limitations to independent evolution of plumage ornamentation in each sex. However, contrary to the expectation, strong sexual selection on males – which led to increased colouration – had an antagonistic and stronger effect on females.

“Strong sexual selection leads to larger differences in ornamentation between the sexes, but the most obvious is not that males become more colourful, but that females becoming duller” summarizes Mihai Valcu.

The scientists also found that larger species and species that live in the tropics are more colourful, and this is true in both sexes. Being large reduces predation risk and hence being colourful may be less “costly” in those species. In the tropics, resource competition is typically higher, and therefore it may be more important to signal quality via increased ornamentation.

Overall, interspecific variation in plumage colour can be better explained in females than in males: females are more colourful in monogamous species and in cooperatively breeding species, where the competition among females over mating opportunities is higher.

“Our study shows that plumage ornamentation of females is not simply a by-product of the ornamentation in males”, says Bart Kempenaers, director in Seewiesen. In fact, it seems that females are highly ornamented when they also benefit from signalling their quality or competitiveness, either because it plays a role in mate choice, or via competition among females.

Weitere Informationen:

http://www.mpg.de/9711615/birds-plumage-colouration
http://DOI: 10.1038/nature15509

Dr. Sabine Spehn | Max-Planck-Institut für Ornithologie

Further reports about: Max Planck Institute Max-Planck-Institut breeding female females plumage species tropics

More articles from Life Sciences:

nachricht A study demonstrates that p38 protein regulates the formation of new blood vessels
17.07.2019 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht For bacteria, the neighbors co-determine which cell dies first: The physiology of survival
17.07.2019 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>