Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic Survivalists

02.05.2018

Phytoplankton assemblages in coastal waters remain productive, despite variable environmental conditions

They form the basis of the Arctic food web – and are extremely tough: even when the water becomes more acidic and the available light or temperatures change, various phytoplankton assemblages in the Arctic demonstrate undiminished productivity and biodiversity.


Kongsfjord, Spitsbergen: Clara Hoppe (r.) & team

Photo: Alfred-Wegener-Institut/P. Versone

This was the main finding presented in a study by researchers at the Alfred Wegener Institute, which they jointly release with their Canadian colleagues advanced online in the journal Nature Climate Change. Yet the question of whether this source of food for seals, whales and commercially harvested fish species in the Arctic can ultimately cope with global climate change requires further research to answer.

Sometimes constant darkness under metre-thick ice, sometimes sunlight 24 hours a day; sometimes clear and salty seawater, sometimes murky freshwater from rivers; and all this at icy temperatures: phytoplankton living in the coastal waters of the Arctic have to cope with extreme and highly variable environmental conditions.

Though these aspects pose serious challenges, in an era characterised by global transformation they can also be advantageous – because they have helped Arctic phytoplankton adapt to variable environmental conditions in the course of their evolution.

That is one possible explanation for the fact that some phytoplankton assemblages can more successfully acclimate to global change than their counterparts from regions with more stable environmental conditions, as the first author of the study, biologist Dr Clara Hoppe from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) explains.

“We were able to demonstrate that some phytoplankton, the most important primary producers in the Arctic, are extremely robust. For instance, they demonstrate less sensitivity to ocean acidification than what we are used to seeing in assemblages from the Southern Ocean or the temperate latitudes,” says Clara Hoppe. In a range of experiments with naturally occurring phytoplankton assemblages, she varied the temperature, available light and pH value, and measured the phytoplankton’s productivity.

Our oceans are becoming more acidic because, due to the combustion of fossil fuels, more carbon dioxide is being released into the atmosphere. CO2 reacts with water to produce carbonic acid and reduces the water’s pH level, which, at the cellular level, can influence organisms’ metabolism, and with it, their productivity.

In nine out of ten experiments, the productivity remained unchanged; only in the experiment with the lowest temperature (1.8 degrees Celsius), increased acidification resulted in significantly decreased productivity; at the other temperatures tested (from 3 to 8 degrees Celsius), ocean acidification produced no measurable effects during the one to three week lasting experiments. As the authors conclude, “Phytoplankton are apparently capable of tolerating the higher proton levels that underlie sinking pH values, provided the temperature doesn’t drop below a certain threshold.”

The team attributes the general ability of phytoplankton from coastal regions to remain productive despite highly variable environmental conditions to a number of different mechanisms. Firstly, the individual phytoplankton seem capable of acclimating to a diverse range of conditions in a flexible way, as the AWI team was able to demonstrate in further laboratory experiments.

Secondly, many diatom species produce spores, which can survive for several years on the ocean floor. If the environmental conditions are advantageous for certain spores, they hatch and subsequently initiate phytoplankton blooms. As such, there is a “seed bank” which provides a high degree of inter- and intraspecific diversity, which allows those species and strain that are suited best for many combinations of environmental conditions to come up and thrive.

“Primary production in the Arctic is an essential ecosystem service, which the increasingly commercially important fishing grounds will also depend on. In our lab experiments, we were able to demonstrate that these producers are surprisingly resistant in terms of the ocean acidification levels we expect to see by the end of the century – and that’s good news!”, states AWI biologist Clara Hoppe. Nevertheless it is important to understand the limits and costs of this resistance, to which the study has made a valuable contribution. Whether the outcomes can also be used to draw conclusions regarding the complex food web in nature is something that only further research can tell us.

Original publication:
Clara J. M. Hoppe, Klara K. E. Wolf, Nina Schuback, Philippe D. Tortell and Björn Rost: Compensation of Ocean Acidification Effects in Arctic Phytoplankton Assemblages. DOI:10.1038/s41558-018-0142-9

EMBARGOED until 30 April 2018 at 1600 London time / 1100 US Eastern time / 1700 Central European Summertime

Notes for Editors:
Please observe the embargo. Printable images can be downloaded under the following link:
http://multimedia.awi.de/medien/pincollection.jspx?collectionName=%7B690a1917-37...

Your academic contact partner at the Alfred Wegener Institute is:
• Dr Clara Hoppe, currently working on Svalbard, please arrange appointments for phone calls via email: Clara.Hoppe(at)awi.de

At the AWI’s Communications and Media Relations department, Dr Folke Mehrtens (tel.: +49 471 4831-2007; e-mail: medien(at)awi.de) will be pleased to help you with any questions.

Follow the Alfred Wegener Institute on Twitter (https://twitter.com/AWI_Media) and Facebook (www.facebook.com/AlfredWegenerInstitute).

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de/

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>