Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Archivist in the sound library – New model for speech and sound recognition

15.09.2011
People are adept at recognizing sensations such as sounds or smells, even when many stimuli appear simultaneously.

But how the association works between the current event and memory is still poorly understood. Scientists at the Bernstein Center and the Ludwig-Maximilians Universität (LMU) Munich have developed a mathematical model that accurately mimics this process with little computational effort and may explain experimental findings that have so far remained unclear. (PLoS ONE, September 14, 2011)

The so-called ‘cocktail party-problem’ has already kept scientists busy for decades. How is it possible for the brain to filter familiar voices out of background noise? It is a long-standing hypothesis that we create a kind of sound library in the auditory cortex of the brain during the course of our lives. Professor Christian Leibold and Dr. Gonzalo Otazu, members of the Bernstein Center Munich and engaged at the Ludwig-Maximilians Universität (LMU) Munich now show in a new model how the brain can compare stored and perceived sounds in a particularly efficient manner. Figuratively speaking, current models operate on the following principle: An archivist (possibly the brain region thalamus) compares the incoming sound with the individual entries in the library, and receives the degree of matching for each entry. Usually, however, several entries fit similarly well, so the archivist does not know which result is actually the right one.

The new model is different: as previously the archivist compares the sound with the library entries, this time getting back only a few really relevant records and information about how much the archived and heard elements differ. Therefore, only in the case of unknown or little matching inputs are large amounts of data sent back. “Perhaps this is also one reason why we can ignore known sounds better than new ones,” speculates Leibold, head of the study. During a test, the model was easily able to detect the sound of a violin and a grasshopper at the same time from 400 sounds with an overlapping frequency spectrum. Furthermore computational and memory requirements were significantly smaller than in comparable models. For the first time a library-based model allows a highly efficient real-time implementation, which is a prerequisite for an implementation in brain circuits.

Experiments long ago showed that a lot of information is sent from the cerebrum to the thalamus, so far without a universally accepted explanation. The new model predicts exactly this flow of information. “We quickly knew that our model works. But why and how, we had to find out laboriously,” Leibold says. Abstract mathematical models of neurobiological processes have the advantage that all contributing factors are known. Thus, one can show whether the model works well in a broad, biologically relevant, application-spectrum, as in this case. The researchers now want to incorporate their findings into other models that are more biologically detail-oriented, and finally test it in psychoacoustic experiments. (Faber/Bernstein Coordination Site)

The Bernstein Center Munich is part of the National Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. The network is named after the German physiologist Julius Bernstein (1835–1917).

Original publication:
Otazu G, Leibold C (2011): A corticothalamic circuit model for sound identification in complex scenes. doi: 10.1371/journal.pone.0024270 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0024270
For further information please contact:
Prof. Christian Leibold
Bernstein Center for Computational Neuroscience
Department Biology II
Ludwig-Maximilians-Universität Munich
Großhaderner Straße 2
D-82152 Planegg-Martinsried

Johannes Faber | idw
Further information:
http://www.bccn-muenchen.de/
http://www.nncn.de/
http://www.lmu.de/

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>