Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Approach to Wound Healing May be Easy on Skin, but Hard on Bacteria

20.08.2009
In a presentation yesterday (Aug. 19) to the American Chemical Society meeting, Ankit Agarwal, a postdoctoral researcher at the University of Wisconsin-Madison, described an experimental approach to wound healing that could take advantage of silver's anti-bacterial properties, while sidestepping the damage silver can cause to cells needed for healing.

Silver is widely used to prevent bacterial contamination in wound dressings, says Agarwal, "but these dressings deliver a very large load of silver, and that can kill a lot of cells in the wound."

Wound healing is a particular problem in diabetes, where poor blood supply that inhibits healing can require amputations, and also in burn wards. Agarwal says some burn surgeons avoid silver dressings despite their constant concern with infection.

Using a new approach, Agarwal has crafted an ultra-thin material carrying a precise dose of silver. One square inch contains just 0.4 percent of the silver that is found in the silver-treated antibacterial bandages now used in medicine.

In tests in lab dishes, the low concentration of silver killed 99.9999 percent of the bacteria but did not damage cells called fibroblasts that are needed to repair a wound.

Agarwal builds the experimental material from polyelectrolyte multilayers "” a sandwich of ultra-thin polymers that adhere through electrical attraction. To make the sandwich, Agarwal alternately dips a glass plate in two solutions of oppositely charged polymers, and finally adds a precise dose of silver.

"This architecture is very easily tuned to different applications," Agarwal says, because it allows exact control of such factors as thickness, porosity and silver content. The final sandwich may range from a few nanometers to several hundred nanometers in thickness. (One nanometer is one-billionth of a meter; a human hair is about 60,000 nanometers in diameter.)

Nicholas Abbott, a professor of chemical and biological engineering who advises Agarwal, says during the past decade, "about a bazillion papers have been published on polyelectrolyte multilayers. It's been a tremendous investment by material scientists, and that investment is now ripe to be exploited."

The project was supported by seed funding from the Wisconsin Institutes of Discovery "” a new unit devoted to advancing technology in five targeted areas, including tissue engineering "” and benefited from contributions by Christopher Murphy, Jonathan McAnulty and Charles Czuprynski of UW-Madison's School of Veterinary Medicine; Ronald Raines of the Department of Biochemistry; and Michael Schurr, a burn surgeon at the School of Medicine and Public Health.

Although both mammalian cells and bacteria are sensitive to silver, bacteria are much more sensitive, leaving a sweet spot "” a concentration of silver that can kill bacteria without harming cells needed for healing.

In tests using mouse cells and sample bacteria, Agarwal has tuned the dose to find the sweet spot where the silver bullet destroys 99.9999 percent of the bacteria, but does not harm fibroblasts.

Indeed, the system is so sensitive that increasing the silver dose from 0.4 percent to 1 percent of the level used in a commercial dressing severely damaged the fibroblasts.

To kill bacteria, silver must take the form of charged particles, or ions, and the tiny silver nanoparticles that Agarwal embeds in the sandwich can be designed to release ions for days or weeks as needed. In contrast, Agarwal says, commercial wound dressings contain a large dose of silver ions, which are released faster and with less control.

The required dose of silver can also be reduced because the new material would be designed to stay in close contact with the wound, Abbott says. "In a commercial dressing, the silver is part of the bandage that is placed on the wound surface. We envision this material becoming incorporated into the wound; the cells will grow over it and it will eventually decay and be absorbed into the body, much like an absorbable suture."

Tests on animals will be needed to before the new material can be tested on humans, says Abbott. "A commercial dressing needs to have a large quantity of silver so it can diffuse to the wound bed, and that quantity turns out to be toxic to mammalian cells in lab dishes. We are putting the silver where we need it, so we can use a small loading of silver, which does not exhibit toxicity to mammalian cells because the silver is precisely targeted."

Ankit Agarwal | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>