Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anticipation of stressful situations accelerates cellular aging

22.02.2012
Short telomeres associated with increased risk for chronic diseases

The ability to anticipate future events allows us to plan and exert control over our lives, but it may also contribute to stress-related increased risk for the diseases of aging, according to a study by UCSF researchers.

In a study of 50 women, about half of them caring for relatives with dementia, the psychologists found that those most threatened by the anticipation of stressful tasks in the laboratory and through public speaking and solving math problems, looked older at the cellular level.

The researchers assessed cellular age by measuring telomeres, which are the protective caps on the ends of chromosomes. Short telomeres index older cellular age and are associated with increased risk for a host of chronic diseases of aging, including cancer, heart disease and stroke.

"We are getting closer to understanding how chronic stress translates into the present moment," said Elissa Epel, PhD, an associate professor in the UCSF Department of Psychiatry and a lead investigator on the study. "As stress researchers, we try to examine the psychological process of how people respond to a stressful event and how that impacts their neurobiology and cellular health. And we're making some strides in that."

The researchers also found evidence that caregivers anticipated more threat than non-caregivers when told that they would be asked to perform the same public speaking and math tasks. This tendency to anticipate more threat put them at increased risk for short telomeres. Based on that, the researchers propose that higher levels of anticipated threat in daily life may promote cellular aging in chronically stressed individuals.

"How you respond to a brief stressful experience in the laboratory may reveal a lot about how you respond to stressful experiences in your daily life," said Aoife O'Donovan, PhD, a Society in Science: Branco Weiss Fellow at UCSF and the study's lead author. "Our findings are preliminary for now, but they suggest that the major forms of stress in your life may influence how your respond to more minor forms of stress, such as losing your keys, getting stuck in traffic or leading a meeting at work. Our goal is to gain better understanding of how psychological stress promotes biological aging so that we can design targeted interventions that reduce risk for disease in stressed individuals. We now have preliminary evidence that higher anticipatory threat perception may be one such mechanism."

The study will be published in the May issue of the journal Brain, Behavior and Immunity.

Research on telomeres, and the enzyme that makes them, was pioneered by three Americans, including UCSF molecular biologist and co-author on this manuscript Elizabeth Blackburn, PhD, who co-discovered the telomerase enzyme in 1985. The scientists received the Nobel Prize in Physiology or Medicine in 2009 for this work.

The research related to anticipation was funded by grants from the Division of Behavioral and Social Research at the National Institute of Aging/National Institutes of Health and Bernard and Barbro Foundation as well as by a Society in Science: Branco Weiss Fellowship.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For further information, please visit http://www.ucsf.edu/

Juliana Bunim | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>