Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibody against carcinogenic substance deciphered

13.07.2017

Summertime is barbecue time. However, when fat reacts with glowing coal, a substance chemists call benzopyrene is created. It is a widespread environmental toxin that can cause cancer in humans. Since buildings were heated with coal and wood for decades, dispersed by chimney smoke, it is now also found in soil and groundwater. A team led by Prof. Arne Skerra from the Technical University of Munich (TUM) has deciphered the binding mechanism of an antibody to benzopyrene — a discovery that could pave the way for an easier method to identify and, hence, remove the toxin.

During the incomplete combustion of organic substances polycyclic aromatic hydrocarbons (PAHs) are created. The most well-known of these substances is benzo[a]pyrene (BaP) due to its high toxicity and its facile identification. Hence, it is generally used as a marker for the prevalence of PAHs. In the human body, PAHs substances are converted into molecules that may cause genetic variations (mutations), which in the worst case results in tumors. Hence, PAHs are seen as hazardous substances or environmental toxins.


When fat reacts with glowing coal at a barbecue, a substance chemists call benzopyrene is created. It is a widespread environmental toxin that can cause cancer in humans.

Photo: Fotolia/Dederer

Source: TUM

PAHs are released during the incomplete combustion of fossil fuels

Apart from the barbecuing of sausages, steaks or vegetables, significant amounts of PAHs are also created when smoking tobacco, which is why even passive smoking is now considered as being carcinogenic. Similarly, open fireplaces in apartments and vehicle exhausts are also seen as sources of PAHs. PAHs emitted into the air by the burning of fossil fuels remain there or bind to soot particles. By way of precipitation, they can then accumulate in the soil, on playgrounds, and in groundwater, ultimately also ending up in drinking water.

Because benzo[a]pyrene is highly carcinogenic, European directives specify a limit for the maximum amount of this substance in drinking water (10 ng/L for BaP). However, in order to measure such minute values, highly sensitive methods are needed. The team led by Prof. Arne Skerra from the Chair of Biological Chemistry in Weihenstephan and Prof. Dietmar Knopp from the Chair of Analytical Chemistry in Grosshadern have succeeded in identifying an antibody that tightly binds benzo[a]pyrene. They describe the complicated binding mechanism in the current issue of the specialist journal "Angewandte Chemie International Edition" (lit. "Applied Chemistry").

"We now know how the binding of the antibody to benzo[a]pyrene, a peculiar organic compound, takes place", says Prof. Skerra, "allowing us to possibly develop antibodies against other PAHs as well. Hence, in the next step, it is conceivable that such antibodies may be used to separate aromatic hydrocarbons from contaminated drinking water, for example."

However, whether the scientists' discovery can eliminate the hazards of eating barbecue sausages is a different matter. Until then, barbecue fans should not grill their meat too long nor at a too high temperature, and also prevent meat juice and fat from dripping into the hot coal if possible.

Publikation:
Andreas Eichinger, Irmgard Neumaier, Michael Pschenitza, Reinhard Niessner, Dietmar Knopp und Arne Skerra: Tight molecular recognition of benzo[a]pyrene by a high affinity antibody, Angewandte Chemie International Edition 6/2017. DOI: 10.1002/anie.201703893

Contact:
Prof. Dr. Arne Skerra
Chair of Biological Chemistry
Technical University of Munich
Phone: +49/8161/71-4351
Mail: skerra@tum.de
http://www.wzw.tum.de/bc

Prof. Dr. Dietmar Knopp
Technical University of Munich
Chair of Analytical Chemistry
Phone: +49/89/2180-78241
Mail: dietmar.knopp@ch.tum.de

Weitere Informationen:

https://www.tum.de/en/about-tum/news/press-releases/detail/article/34067/

Dr. Ulrich Marsch | Technische Universität München

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>