Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibodies as ‘messengers’ in the nervous system

27.01.2017

Antibodies are able to activate human nerve cells within milliseconds and hence modify their function — that is the surprising conclusion of a study carried out at Human Biology at the Technical University of Munich (TUM). This knowledge improves our understanding of illnesses that accompany certain types of cancer, above all severe intestinal malfunctions.

Functional disorders in organs that manifest in conjunction with tumors are called paraneoplastic syndromes. These syndromes are not caused by the primary tumor itself, but are instead frequently a result of the body’s autoimmune reaction. In such cases, a person’s own antibodies turn against their own cells and attack them.


A Ganglion in the human intestine, which shows nerval activity after giving the anti-HuD-serum. The activity is red.

(Fig.: Schemann, Michel/ TUM)

One of these functional disorders is paralysis of the intestinal tract, for example intestinal pseudoobstruction. It makes it difficult for patients to obtain the nutrients and calories they require from their diet. The so-called anti-Hu syndrome is a type of paraneoplastic syndrome often associated with atonic gut and generally occurs in conjunction with small-cell lung cancer. Paraneoplastic syndromes often occur before the tumor is even detected.

Hu proteins are usually located in the nucleus of all nerve cells and consist of four family members (HuA, B, C, and D). Because the tumor releases the Hu protein, the immune system generates antibodies to fight it. Initially, they serve to defend against the tumor: The greater the concentration of antibodies, the slower the tumor grows. However, these anti-Hu antibodies — named after the first patient in whom these antibodies were discovered in 1985 — also result in an autoimmune reaction with severe gut disorders as an accompanying illness.

Nerves are activated before they can be damaged

Professor Michael Schemann and his colleagues at the Chair for Human Biology at TUM wanted to identify causes for possible nervous function disorders that occur in paraneoplastic syndromes and paralytic intestine. For this purpose, they examined serums from patients with small-cell lung cancer from the Mayo Clinic in Rochester, MN (USA). In a study conducted over a period of ten years, the researchers were able to show for the first time that these patient serums activate human nerve cells within milliseconds without causing neuronal damage. This modifies nerve functions long before the autoimmune reaction damages the nerves.

Working together with the company Euroimmun from Lübeck, the team was even able to identify the factor responsible for this: Normally, nerve cells are activated or inhibited via neurotransmitters that bind to specific structures in the cell membrane (receptors). Surprisingly, it turned out to be an antibody — namely the anti-HuD antibody — which stimulated the nerve cells in the patient serums.

Antibody mimics neurotransmitters acetylcholine and adenosine triphosphate

What was striking about this finding was the fact that the antibody does not achieve this effect binding to its genuine target protein. “Interestingly, the nerve-activating effect is transmitted via receptors for neurotransmitters,” said Professor Schemann. “These receptors are usually activated by acetylcholine and adenosine triphosphate.” In a nutshell, the antibody more or less mimics the effects of the neurotransmitters acetylcholine and adenosine triphosphate.

The HuD protein typically stabilizes ribonucleic acid (RNA) and has nothing to do with nerve activation. How and where exactly the anti-HuD antibody binds to the receptors continues to remain a black box. However, this newly discovered effect of the anti-HuD-antibody heralds a paradigm shift, according to Professor Schemann, because antibodies are able to activate nerves regardless of antibody-specific binding structures on the cell membrane.

“Although what we have found will not heal lung cancer itself,” Professor Schemann explained, “it will lead to new clinical understanding and hence hopefully to new therapeutic approaches for related paraneoplastic syndromes such as intestinal pseudoobstruction.”

Just recently, the research group at the Chair for Human Biology, in collaboration with the Charité in Berlin, demonstrated that antibodies are able to activate human nerves*. In this case, the functional principle was obvious, as the binding of the antibody to defined structures of a potassium channel modified the excitability of the nerves.

Publications:
Qin Li**, Klaus Michel**, Anita Annahazi, Ihsan E. Demir, Güralp O. Ceyhan, Florian Zeller, Lars Komorowski, Winfried Stöcker, Michael J. Beyak, David Grundy, Gianrico Farrugia, Roberto De Giorgio und Michael Schemann: Anti-Hu antibodies activate enteric and sensory neurons, Scientific Reports 12/2016. (** coordinate 1st-authors)
DOI: 10.1038/srep38216
http://www.nature.com/articles/srep38216

*Piepgras J, Höltje M, Michel K, Li Q, Otto C, Drenckhahn C, Probst C, Schemann M, Jarius S, Stöcker W, Balint B, Meinck HM, Buchert R, Dalmau J, Ahnert-Hilger G, Ruprecht K.: Anti-DPPX encephalitis, Neurology 2015 Sep 8;85(10):890-7.
DOI: 10.1212/WNL.0000000000001907

Contact:

Prof. Dr. Michael Schemann
Technical University of Munich
Chair for Human Biology
Tel: +49/8161/71 5403
schemann@wzw.tum.de

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/33691/
http://humanbiology.wzw.tum.de/index.php?id=24&L=1

Dr. Ulrich Marsch | Technische Universität München

More articles from Life Sciences:

nachricht New technique for in-cell distance determination
19.03.2019 | Universität Konstanz

nachricht Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry
19.03.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Heading towards a tsunami of light

19.03.2019 | Physics and Astronomy

Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry

19.03.2019 | Life Sciences

From foam to bone: Plant cellulose can pave the way for healthy bone implants

19.03.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>