Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New anti-HIV drug target identified by University of Minnesota researchers

19.12.2013
University of Minnesota researchers have discovered a first-of-its-kind series of compounds possessing anti-human immunodeficiency virus (HIV) activity. The compounds present a new target for potential HIV drug development and future treatment options.

Complete findings are printed in today's issue of the Journal of Virology.

The compounds, known as ribonucleoside analogs 8-azaadenosine, formycin A, 3-deazauridine, 5-fluorocytidine and 2'-C-methylcytidine, were found to stop the replication and spread of HIV by blocking HIV DNA synthesis or by inducing lethal mutagenesis. Lethal mutagenesis annihilates HIV by causing it to mutate to the point of extinction.

The compound 3-deazauridine stopped HIV by creating so many mutations in the virus that the virus was no longer able to spread throughout the body by infecting other cells. The other compounds caused early termination of HIV DNA synthesis, again preventing the virus from being able to reproduce. Studies prior to this one determined certain ribonucleosides analogs impact HIV DNA synthesis, a process called reverse transcription. The extent to which they worked was not previously known.

"It's a counterintuitive finding," said University of Minnesota virologist Louis Mansky, Ph.D. "These ribonucleoside analogs were not generally thought to be associated with affecting HIV DNA synthesis – a critical step in virus replication. We don't yet know all the details for how these particular compounds stop the virus in its path."

The research, if translatable, will provide a potentially cost-effective and fresh treatment option to counter HIV's rapid evolution and treat HIV resistance to currently approved anti-HIV drugs. Anti-HIV ribonucleoside analogs are less expensive to create in a laboratory than deoxyribonucleoside analogs, which are key in drugs currently used to stop HIV replication and cell spread. Additionally, the similarity of ribonucleoside analogs to deoxyribonucleosides may help speed up the development process to make full use of this target as a wealth of understanding around ribonucleoside analogs already exists.

The University of Minnesota team responsible for discovering ribonucleoside analogs with anti-HIV activity includes members from the Center for Drug Design, School of Dentistry, Institute for Molecular Virology and Masonic Cancer Center, University of Minnesota.

Funding was provided by National Institutes of Health grant nos. R01 GM56615, R21 AI96937 and T32 DA007097, as well as initial support from a University of Minnesota Center for Drug Design funding agreement.

Miranda Taylor | EurekAlert!
Further information:
http://www.umn.edu

Further reports about: DNA DNA synthesis Design Thinking Drug Delivery HIV Minnesota Virology anti-HIV drug

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>