Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-cancer gene discovered: Perspective for therapy

26.02.2009
Starting with the tiny fruit fly, and then moving into mouse and human patients, researchers at VIB connected to the Center for Human Genetics (K.U. Leuven) showed that the same gene suppresses cancer in all three.

Reciprocally, switching off the gene leads to cancer. The scientists think there is a good chance that the gene can be switched on again with a drug. They report their findings in the reputed scientific journal PLoS Biology.

Specialized cells

All of us begin our lives as one cell, which divides into two, four, eight … into a human of a few billion cells. Almost all cells in an adult human – skin cells, liver cells, eye lens cells, nerve cells, insulin-producing cells etc – are highly specialized to perform a specific function. They are no longer capable of taking on another task: when a skin cell divides, you get more skin cells. During the growth from an embryo to an adult human, the cells become more and more specialized ("differentiated", biologists say).

Cancer cells are an exception to that rule: they are much less specialized, and feel at home in different places in the body. Researchers have long believed that cells must take the last step in their specialization to be better protected from turning into cancer cells. However, this was not proven in a living organism.

Suppressing cancer

Wouter Bossuyt from the Group of Bassem Hassan and their fellow VIB researchers at K.U.Leuven, now demonstrate with fruit flies that master control genes steering the specialization step indeed inhibit tumor formation. The specific example the VIB scientists used, are the ones biologists call the Atonal genes. These genes are very similar to each other in all species, from flies to humans.

With mice, and in collaboration with colleagues from the United States, they showed that loss of one of those genes, Atonal homolog 1 or ATOH1, causes colon cancer. The gene regulates the last step in the specialization to epithelial cell of the colon. Humans with colon cancer frequently have an inactivated ATOH1 gene, the researchers observed.

Treatment

The researchers could – in a test tube – reactivate the gene in human colon cancer cells. The tumor cells stopped growing and committed suicide. Since they were able to switch the gene on with a reasonably simple chemical, this opens possibilities to one day perhaps switch the gene back on in living patients. It will be very important in the future to study in detail how exactly ATOH1 does performs its anti-cancer job

Sooike Stoops | EurekAlert!
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>