Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ant raids: It’s all in the genes

07.03.2018

Certain ants attack and enslave other species, and integrate their offspring into their own colonies in order to survive. Researchers at the Senckenberg Nature Research Society and the University of Mainz recently discovered that the raids required to achieve this are controlled by different genes in each of several closely related ant species of the genus Temnothorax. This indicates that the evolution of closely related species through changes in the genetic material is a random process in which several paths may lead to the same outcome. Moreover, the researchers were able to identify two specific attack genes in slavemaker ants. The study was recently published in “Scientific Reports.”

Barely 3mm long and yet a veritable war machine – the North American ant species Temnothorax americanus should not be underestimated, since it belongs to a group of ants that capture closely related ant species and make them work in their own colonies.


The Temnothorax americanus ant in the middle is battling with two ants from the species Temnothorax longispinosus in order to enslave them.

Copyright: Barbara Feldmeyer


A colony of slavemaker-ants Temnothorax americanus together with Temnothorax longispinosus – ants which have been subjected to take care of the species brood.

Copyright: Barbara Feldmeyer

The task of these so-called slaves is to raise their conquerors’ brood and to supply food. In order to acquire slaves, ants such as Temnothorax americanus set out on raids. Researchers from the Senckenberg Biodiversity and Climate Research Center and the University of Mainz study which genes control these raids.

“Our experiments show that the combat strategies of Temnothorax americanus and its relatives, Temnothorax dulocticus and Temnothorax pilagens, are basically very similar. However, the details of the attacks differ from species to species,” explains Dr. Barbara Feldmeyer of the Senckenberg Research Center for Biodiversity and Climate, and she adds, “During the raid the differences in the tuning of individual genes become particularly apparent.”

This, together with other findings, suggests, that in the slave-raiding ants differences in gene expressions, i.e., the reading of the gene sequence and the transcription into proteins, is solely geared toward the raid. Similar patterns were also discovered in the potential slaves, which showed different, genetically based defense patterns.

Figuratively speaking, different gene expression means that that in the genetic material of the three ant species, certain buttons are pressed at different levels of intensity – yet, ultimately, this leads to the same result in all species: a successful raid. The team was surprised by these findings, since for closely related, genetically similar species it was assumed that they would all follow similar genetic paths to achieve a specific goal.

However, this study now shows that genetic evolution among closely related species may well be the result of random selection. “The results suggest that many evolutionary adaptations can be traced back to random mutations. These mutations lead to genetic differences even between closely related species. However, since these species are often subject to similar selective pressure, the result of the adaptive processes, i.e., the behavior, is similar,” explains Professor Susanne Foitzik of the University of Mainz.

Despite their differences, the three slave-holding Temnothorax species appear to share two genes that are important for the raids. “Acyl-CoA Delta (11) Desaturase causes the attackers to emit chemical scents during the raid. These scents mask the attackers, thereby increasing the chances for a successful raid. On the other hand, the gene Trypsin-7 appears to affect the recognition potential, thus enabling – at least in part – the identification of the host colonies required for a raid,” adds Feldmeyer in summary.

Contact

Dr. Barbara Feldmeyer
Senckenberg Biodiversity and Climate Research Centre
Tel. +49 (0)69- 7542 1839
barbara.feldmeyer@senckenberg.de

Sabine Wendler
Press officer
Senckenberg Biodiversity and Climate Research Centre
Tel. +49 (0)69- 7542 1818
pressestelle@senckenberg.de

Publication

Alleman, A., Feldmeyer, B. and Foitzik, S. (2018): Comparative analyses of co-evolving host-parasite associations reveal unique gene expression patterns underlying slavemaker raiding and host defensive phenotypes. Scientific Reports, doi:10.1038/s41598-018-20262-y

Press images may be used at no cost for editorial reporting, provided that the original author’s name is published, as well. The images may only be passed on to third parties in the context of current reporting.

This press release and press images are also available at http://www.senckenberg.de/presse

To study and understand nature with its limitless diversity of living creatures and to preserve and manage it in a sustainable fashion as the basis of life for future generations – this has been the goal of the Senckenberg Gesellschaft für Naturforschung (Senckenberg Nature Research Society) for 200 years. This integrative “geobiodiversity research” and the dissemination of research and science are among Senckenberg’s main tasks. Three nature museums in Frankfurt, Görlitz and Dresden display the diversity of life and the earth’s development over millions of years. The Senckenberg Nature Research Society is a member of the Leibniz Association. The Senckenberg Nature Museum in Frankfurt am Main is supported by the City of Frankfurt am Main as well as numerous other partners. Additional information can be found at http://www.senckenberg.de

Sabine Wendler | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Physics: Not everything is where it seems to be

15.10.2018 | Physics and Astronomy

Microfluidic molecular exchanger helps control therapeutic cell manufacturing

15.10.2018 | Life Sciences

Link between Gut Flora and Multiple Sclerosis Discovered

15.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>