Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ant raids: It’s all in the genes

07.03.2018

Certain ants attack and enslave other species, and integrate their offspring into their own colonies in order to survive. Researchers at the Senckenberg Nature Research Society and the University of Mainz recently discovered that the raids required to achieve this are controlled by different genes in each of several closely related ant species of the genus Temnothorax. This indicates that the evolution of closely related species through changes in the genetic material is a random process in which several paths may lead to the same outcome. Moreover, the researchers were able to identify two specific attack genes in slavemaker ants. The study was recently published in “Scientific Reports.”

Barely 3mm long and yet a veritable war machine – the North American ant species Temnothorax americanus should not be underestimated, since it belongs to a group of ants that capture closely related ant species and make them work in their own colonies.


The Temnothorax americanus ant in the middle is battling with two ants from the species Temnothorax longispinosus in order to enslave them.

Copyright: Barbara Feldmeyer


A colony of slavemaker-ants Temnothorax americanus together with Temnothorax longispinosus – ants which have been subjected to take care of the species brood.

Copyright: Barbara Feldmeyer

The task of these so-called slaves is to raise their conquerors’ brood and to supply food. In order to acquire slaves, ants such as Temnothorax americanus set out on raids. Researchers from the Senckenberg Biodiversity and Climate Research Center and the University of Mainz study which genes control these raids.

“Our experiments show that the combat strategies of Temnothorax americanus and its relatives, Temnothorax dulocticus and Temnothorax pilagens, are basically very similar. However, the details of the attacks differ from species to species,” explains Dr. Barbara Feldmeyer of the Senckenberg Research Center for Biodiversity and Climate, and she adds, “During the raid the differences in the tuning of individual genes become particularly apparent.”

This, together with other findings, suggests, that in the slave-raiding ants differences in gene expressions, i.e., the reading of the gene sequence and the transcription into proteins, is solely geared toward the raid. Similar patterns were also discovered in the potential slaves, which showed different, genetically based defense patterns.

Figuratively speaking, different gene expression means that that in the genetic material of the three ant species, certain buttons are pressed at different levels of intensity – yet, ultimately, this leads to the same result in all species: a successful raid. The team was surprised by these findings, since for closely related, genetically similar species it was assumed that they would all follow similar genetic paths to achieve a specific goal.

However, this study now shows that genetic evolution among closely related species may well be the result of random selection. “The results suggest that many evolutionary adaptations can be traced back to random mutations. These mutations lead to genetic differences even between closely related species. However, since these species are often subject to similar selective pressure, the result of the adaptive processes, i.e., the behavior, is similar,” explains Professor Susanne Foitzik of the University of Mainz.

Despite their differences, the three slave-holding Temnothorax species appear to share two genes that are important for the raids. “Acyl-CoA Delta (11) Desaturase causes the attackers to emit chemical scents during the raid. These scents mask the attackers, thereby increasing the chances for a successful raid. On the other hand, the gene Trypsin-7 appears to affect the recognition potential, thus enabling – at least in part – the identification of the host colonies required for a raid,” adds Feldmeyer in summary.

Contact

Dr. Barbara Feldmeyer
Senckenberg Biodiversity and Climate Research Centre
Tel. +49 (0)69- 7542 1839
barbara.feldmeyer@senckenberg.de

Sabine Wendler
Press officer
Senckenberg Biodiversity and Climate Research Centre
Tel. +49 (0)69- 7542 1818
pressestelle@senckenberg.de

Publication

Alleman, A., Feldmeyer, B. and Foitzik, S. (2018): Comparative analyses of co-evolving host-parasite associations reveal unique gene expression patterns underlying slavemaker raiding and host defensive phenotypes. Scientific Reports, doi:10.1038/s41598-018-20262-y

Press images may be used at no cost for editorial reporting, provided that the original author’s name is published, as well. The images may only be passed on to third parties in the context of current reporting.

This press release and press images are also available at http://www.senckenberg.de/presse

To study and understand nature with its limitless diversity of living creatures and to preserve and manage it in a sustainable fashion as the basis of life for future generations – this has been the goal of the Senckenberg Gesellschaft für Naturforschung (Senckenberg Nature Research Society) for 200 years. This integrative “geobiodiversity research” and the dissemination of research and science are among Senckenberg’s main tasks. Three nature museums in Frankfurt, Görlitz and Dresden display the diversity of life and the earth’s development over millions of years. The Senckenberg Nature Research Society is a member of the Leibniz Association. The Senckenberg Nature Museum in Frankfurt am Main is supported by the City of Frankfurt am Main as well as numerous other partners. Additional information can be found at http://www.senckenberg.de

Sabine Wendler | Senckenberg Forschungsinstitut und Naturmuseen

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>