Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Angina: New Drug Gets Right to the Heart of the Problem

07.01.2009
A compound designed to prevent chest pains in heart patients has shown promising results in animal studies, say scientists.

In the second issue of the British Journal of Pharmacology to be published by Wiley-Blackwell, researchers from the Centre de Recherche Pierre Fabre in France, show that the novel compound F15845 has anti-angina activity and can protect heart cells from damage without the unwanted side effects often experienced with other drugs.

Because F15845 does not interfere with heart function, as some conventional drugs such as beta blockers do, it could be given as part of a combination therapy. "It's completely different from other anti-angina drugs which directly interact with the function of the heart. So the idea is to do a co-administration with conventional heart drugs such as beta blockers," says lead author of the study, Bruno Le Grand from the Centre de Recherche Pierre Fabre in Castres, France.

The drug works by blocking excess influxes of sodium into heart cells through 'gate' proteins called sodium channels. High levels of sodium in heart cells are associated with low oxygen levels, which cause angina and can in turn lead to the build up of toxic concentrations of calcium that are lethal to cells. A number of drugs that target sodium channels can block the influx, but they act universally on heart cells and can sometimes cause further heart irregularities.

F15845 specifically targets the sodium channels that are thought to cause the most damage, those responsible for what is known as the persistent sodium current, which causes a permanent excess sodium influx.

The study confirmed the drug's anti-angina activity in laboratory animals. The researchers say the drug is absorbed well when given orally and represents a novel therapeutic opportunity for treating angina and possibly other cardiac pathologies.

"We know that in animals, we have acceptable bioavailability, but with the data that we have in human volunteers following phase I clinical trials we are very confident that it is above 70 per cent," says Le Grand.

Jennifer Beal | alfa
Further information:
http://www.wiley-blackwell.com
http://interscience.wiley.com

Further reports about: Angina Drug F15845 Heart anti-angina activity anti-angina drugs chest pain sodium channels

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>