Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anatomy of an outbreak

06.05.2011
Researchers probing genetics of chikungunya virus identify tiny changes separating epidemic African strain and tamer Asian variety

What causes a virus to suddenly begin infecting large numbers of people?

Scientists have long known that the process they call "viral emergence" involves a wide variety of factors. Some are changes in the environment, either generated by natural causes or human activity. Others are internal, arising from accidental changes — mutations —in the virus' genetic code.

Studying such mutations in different strains of the chikungunya virus has helped University of Texas Medical Branch researchers solve one of the most puzzling mysteries of chikungunya's emergence in Asia. They describe their results in an article in the online "Early Edition" section of the Proceedings of the National Academy of Sciences.

Chikungunya, which originated in Africa, is carried by mosquitoes and causes intensely painful arthritis that can last for months or years. Thanks to a discovery made at UTMB, scientists know that the virus' rapid spread was launched by a single mutation in an African strain of the virus.

The alteration was so small — a single amino acid change in one of the virus' exterior "envelope" proteins — that a researcher compared it to "a single missing comma in a six-page short story." But this so-called "E1-A226V mutation" made it possible for the virus to efficiently infect Aedes albopictus, a species of mosquito found nearly worldwide.

The mutated strain of the virus took full advantage of its new host, infecting millions of people as it spread across India, Thailand and Malaysia. It even jumped to northern Italy, carried by an infected traveler, where it established itself in the local Aedes albopictus mosquito population.

This albopictus-adapted strain's success raised a fundamental question, for this was not chikungunya's first visit to Asia. Strains of the virus transmitted by another mosquito species, Aedes aegypti, have caused sporadic outbreaks there for nearly six decades. If the virus was changing all the time, and only one minor mutation was necessary to switch the virus from aegytpi to albopictus — a more widespread vector — why hadn't that mutation happened in the strains that had arrived in Asia 60 years before?

"Asia is Aedes albopictus' native territory, but we can't find any evidence of chikungunya transmission by albopictus until the arrival of this new strain," said UTMB pathology professor Scott Weaver, senior author on the PNAS paper. "It was surprising to us that strains of this apparently very adaptable virus circulated in Asia for 60 years without making the adaptation that would allow them to be transmitted by albopictus."

To find out what was going on, Weaver and his colleagues — lead author and postdoctoral fellow Konstantin Tsetsarkin, postdoctoral fellow Rubing Chen, research technician Grace Leal, assistant professor Naomi Forrester, professor Stephen Higgs, and research associate Jing Huang — conducted experiments based on the hypothesis that some part of the Asian chikungunya strains' genetic code was suppressing the key mutation whenever it occurred and thus keeping it from infecting Aedes albopictus.

Using two different Asian strains into which they inserted the E1-A226V mutation, they systematically added additional genetic portions from the African strain, followed by specific mutations to determine which interacted with E1-A226V. Then they tested each change to see whether it affected Aedes albopictus infectivity.

Ultimately, they found that a single genetic element — which also changed an amino acid in the same envelope protein altered by the E1-A226V mutation — increased the Asian chikungunya strains' ability to infect Aedes albopictus by a hundredfold.

"This old Asian lineage needs an additional mutation to adapt to Aedes albopictus, and we think that's what protected India and Southeast Asia from much larger epidemics over the last 60 years," Weaver said. "But some African strains only needed one mutation to spark much larger outbreaks. And now, a strain that emerged from Africa in 2004 seems to be displacing the old Asian strains wherever it goes."

The chikungunya story, Weaver said, demonstrates how small genetic differences among viruses can have dramatic and unexpected effects on their ability to cause human disease. This study also will allow researchers to predict the amount of disease chikungunya may cause if it becomes endemic in the Americas.

"We don't really have the ability to predict when these viruses are going to suddenly mutate and change from one host to another. We can figure out how it happened retrospectively, but we have no idea how many near misses there are," Weaver said. "This was an opportunity to understand one situation where for a long time epidemic emergence didn't happen for a virus in Asia, and how it did happen suddenly when another strain got loose from Africa and started spreading around the globe."

ABOUT UTMB Health: Established in 1891, Texas' first academic health center comprises four health sciences schools, three institutes for advanced study, a research enterprise that includes one of only two national laboratories dedicated to the safe study of infectious threats to human health, and a health system offering a full range of primary and specialized medical services throughout Galveston County and the Texas Gulf Coast region. UTMB Health is a component of the University of Texas System and a member of the Texas Medical Center.

The University of Texas Medical Branch at Galveston
Public Affairs Office
301 University Boulevard, Suite 3.102
Galveston, Texas 77555-0144

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>