Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analyzing the Sheep Genome for Parasite Resistance

19.10.2011
Genetic resistance to a parasitic nematode that infects sheep has been discovered by a team of scientists with the U.S. Department of Agriculture (USDA) and the International Livestock Research Institute (ILRI).

The researchers are the first to detect quantitative trait loci (QTL), genetic locations on chromosomes, for resistance to gastrointestinal nematode parasites in a double-backcross population derived from African native sheep.

The parasites, common in tropical regions, cause significant economic and production losses in Africa each year. Sheep infected with parasites suffer from diarrhea, anemia, weight loss and sometimes death.

Geneticist Tad Sonstegard at the Agricultural Research Service (ARS) Henry A. Wallace Beltsville Agricultural Research Center in Beltsville, Md., and researchers at ILRI in Kenya hope to identify genes that increase tolerance to parasites and improve production of grazing animals. ARS is USDA's chief intramural scientific research agency, and this research supports USDA's priority of promoting international food security.

In one study, researchers mapped the regions of the genome that control resistance to gastrointestinal nematode parasites in a sheep population bred by ILRI. Hybrid rams were produced by mating a Red Maasai, which is tolerant to gastrointestinal parasites, to a Dorper, a breed that is more susceptible to the parasite. Several of the hybrid ram offspring were then bred to either Red Maasai or Dorper ewes to complete the backcross.

Scientists genotyped 20 percent of the backcross progeny to map QTL that affect parasite-resistance traits. Blood packed-cell volume and fecal egg count-indicators of parasites-were collected for three months from more than 1,060 lambs that grazed on parasite-infected pastures. Scientists selected lambs for genotyping based on parasite indicators. They detected significant QTL for average fecal egg count and packed-cell volume on chromosomes 3, 6, 14, and 22.

Future studies will focus on genotyping the same animals using the OvineSNP50, according to Sonstegard. The OvineSNP50 is a powerful tool that can examine more than 50,000 locations in the genome.

Findings from this research were published online in Animal Genetics in May 2011.

Read more about this research in the October 2011 issue of Agricultural Research magazine

Sandra Avant | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>