Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amplifying our vision of the infinitely small

02.12.2013
Richard Martel and his research team at the Department of Chemistry of the Université de Montréal have discovered a method to improve detection of the infinitely small. Their discovery is presented in the November 24 online edition of the journal Nature Photonics.

“Raman scattering provides information on the ways molecules vibrate, which is equivalent to taking their fingerprint. It’s a bit like a bar code,” said the internationally renowned professor. “Raman signals are specific for each molecule and thus useful in identifying these molecules.”


Richard Martel and his research team at the Department of Chemistry of the Université de Montréal have discovered a method to improve detection of the infinitely small. Their discovery is presented in the November 24 online edition of the journal Nature Photonics. Credit: Universite de Montreal

Applications of the discovery: retail, banks, hospitals, etc.

The discovery by Martel’s team is that Raman scattering of dye-nanotube particles is so large that a single particle of this type can be located and identified. All one needs is an optical scanner capable of detecting this particle, much like a fingerprint.

“By incorporating these nanoparticles in an object, you can make it perfectly traceable,” he said. Due to their unique structure, carbon nanotubes, which are electrically conductive, can be used as containers for various molecules. Coupled with a dye, these nanoprobes can increase the complexity and strength of the received signal.

Nanoprobes, which are composed of around one hundred dye molecules aligned inside a cylinder, are 50,000 times smaller than a human hair. They are about one nanometre (nm) in diameter and 500 nm long, yet they send a Raman signal one million times stronger than the other molecules in the surrounding.

According to Professor Martel, the applications from this discovery are numerous. In medicine, nanoprobes could lead to improved diagnostics and better treatment by adhering to the surface of diseased cells. These specifically modified nanoprobes could, in effect, be grafted to bacteria or even proteins, allowing them to be easily identified.

One could also imagine custom officers scanning our passports with Raman multispectral mode (i.e., involving several signals). Nanoprobes could also be used in banknote ink, making counterfeiting virtually impossible.

The beauty of it, said Martel, is that the phenomenon is generalized, and many types of dyes can be used to make nanoprobes or tags, whose “bar codes” are all different. “So far, more than 10 different tags have been made, and it seems the sky’s the limit,” he said. “We could, in theory, create as many of these tags as there are bacteria and use this principle to identify them with a microscope operating in Raman mode.”

The story of Raman signals

Raman scattering mode is an optical phenomenon discovered in 1928 by the physicist Chandrasekhara Venkata Raman. The effect involves the inelastic scattering of photons, i.e. the physical phenomenon by which a medium can modify the frequency of the light impinging on it. The difference corresponds to an exchange of energy (wavelength) between the light beam and the medium. In this way, scattered light does not have the same wavelength as incidental light. The technique has become widely used since the advent of the laser in the industry and for research .

But until now, molecular Raman signals have been too weak to serve the needs of optical imaging effectively. So researchers have used other more sensitive techniques but which are less specific because they have no “bar code.” “It is technically possible, however, to enhance the Raman signals of molecules using rough metallic surfaces,” said Martel. “But their sizes limit the applications of Raman spectroscopy and imaging.”

By aligning dye molecules encapsulated in carbon nanotubes, the researchers were able to amplify the Raman signals of these molecules, which until now have not been strong enough to detect. The article presents experimental evidence of extraordinary scattering of visible light on a nanoparticle.

Besides Richard Martel, E. Gaufrès, N. Y. Wa Tang, F. Lapointe, J. Cabana, M. A. Nadon, N. Cottenye, F. Raymond, all of the Université de Montréal, and T. Szkopek, University McGill, contributed to this discovery.

Full bibliographic informationGiant Raman scattering from J-aggregated dyes inside carbon nanotubes for multispectral imaging
E. Gaufrès,
N. Y.-Wa Tang,
F. Lapointe,
J. Cabana,
M.-A. Nadon,
N. Cottenye,
F. Raymond,
T. Szkopek
& R. Martel
Nature Photonics (2013)
doi:10.1038/nphoton.2013.309
http://www.nature.com/nphoton/journal/vaop/ncurrent/abs/nphoton.2013.309.html

William Raillant-Clark | alfa
Further information:
http://www.umontreal.ca

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>