Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

By amplifying cell death signals, scientists make precancerous cells self-destruct

19.08.2008
When a cell begins to multiply in a dangerously abnormal way, a series of death signals trigger it to self-destruct before it turns cancerous.

Now, in research to appear in the August 15 issue of Genes & Development, Rockefeller University scientists have figured out a way in mice to amplify the signals that tell these precancerous cells to die. The trick: Inactivating a protein that normally helps cells to avoid self-destruction.

The work, led by Hermann Steller, Strang Professor and head of the Laboratory of Apoptosis and Cancer Biology, is the first to reveal the mechanism by which a class of proteins called IAPs regulates cell death. By exposing the mechanism in a living animal, the finding also marks a breakthrough in the field and opens the door for developing a new class of drugs that could aid in cancer therapy and prevention.

“In a way, these mice are guiding clinical trials,” says Steller, who is also a Howard Hughes Medical Institute investigator. “We now can study how IAPs contribute to the development of cancer in a living animal and develop drugs to prevent or thwart the disease.”

IAP stands for “inhibitor of apoptosis protein,” and these proteins do exactly what their name implies. By inhibiting apoptosis, or programmed cell death, they keep cells alive by directly binding to executioner enzymes called caspases. But until now, precisely how IAPs save cells from death has remained unclear.

With graduate student Andrew Schile and postdoc Maria Garcia-Fernandez, Steller studied the X-linked inhibitor of apoptosis protein, or XIAP, and the role of its largely ignored RING domain, which has been implicated in promoting cell death as well as survival. Steller, Schile and Garcia-Fernandez found that genetically targeting and removing RING affected only some cell types in healthy mice. And even though the mice without the RING had more cell death than the mice with the RING, both lived normal lives under normal laboratory conditions.

But when the scientists compared mice that were genetically predisposed to developing cancer, they found that those without the RING lived twice as long as those with it.

“Cancer cells thrive by disabling the molecular machinery that tells sick cells to die,” says Steller. “By removing the RING, we wanted to see whether we would trick the machinery to turn back on. And that’s what happened. Cells die more readily, making it much more difficult for cancer to be established.”

Steller and his team specifically showed that the RING transfers molecular tags on caspases that label these enzymes for destruction. The more tags, the stronger the signal to save the cell from death. However, when the RING is removed, fewer molecular tags are transferred to caspases and often, the signal to save the cell from death is not strong enough. So, more cells die.

The game is not over. Several distinct IAP genes are known to exist, but which ones are important in the development of cancer has also stymied researchers. “We need to use genetics to sort out which individual IAPs contribute to tumors and which IAPS we need to target in order to cure cancer,” says Steller. “This was a very big step in understanding what role IAPs play in cancer, but it isn’t the last.”

Thania Benios | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>