Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer's discovery could bring early diagnosis, treatment closer

27.05.2009
McGill and Lady Davis Institute findings help pinpoint molecular cause of the disease

A discovery made by researchers at McGill University and the affiliated Lady Davis Research Institute for Medical Research at Montreal's Jewish General Hospital offers new hope for the early diagnosis and treatment of Alzheimer's disease.

In a study published in the Journal of Biological Chemistry on May 15, Dr. Hemant Paudel, his PhD student Dong Han and postdoctoral fellows Hamid Qureshi and Yifan Lu, report that the addition of a single phosphate to an amino acid in a key brain protein is a principal cause of Alzheimer's. Identifying this phosphate, one of up to two-dozen such molecules, could make earlier diagnosis of Alzheimer's possible and might, in the longer term, lead to the development of drugs to block its onset.

The crucial protein, called a tau protein, is a normal part of the brain and central nervous system. But in Alzheimer's patients, tau proteins go out of control and form tangles that, along with senile plaques, are the primary cause of the degenerative disease.

Several years ago, it was discovered that tau proteins in normal brains contain only three to four attached phosphates, while abnormal tau in Alzheimer's patients have anywhere from 21 to 25 additional phosphates.

Paudel and his team have discovered that it is the addition of a single phosphate to the Ser202 amino acid within the tau brain protein that is the principal culprit responsible for Alzheimer's.

"The impact of this study is twofold," said Paudel, associate professor at McGill's Dept. of Neurology and Neurosurgery, and Project Director at the Bloomfield Centre for Research in Aging at the Lady Davis. "We can now do brain imaging at the earliest stages of the disease. We don't have to look for many different tau phosphates, just this single phosphate. The possibility of early diagnosis now exists.

"Second, the enzyme which puts this phosphate on the tau can be targeted by drugs, so therapies can be developed. This discovery gives us, for the first time, a clear direction towards the early diagnosis and treatment of Alzheimer's."

Paudel and his students worked for years to exclude the phosphates not directly responsible for causing Alzheimer's symptoms. They finally succeeded by working with FTDP-17, a genetic disease with symptoms similar to Alzheimer's, but transmitted via mutations. By genetically manipulating these mutations, they were able to prove that the phosphate on Ser202 almost single-handedly is responsible for the tau abnormalities that cause both FTDP-17 and Alzheimer's.

The disease leads to severe mental degeneration and almost-inevitable death, and there is no known cure, nor even a reliable technique for early diagnosis. A patient is diagnosed with advanced Alzheimer's in the United States every 70 seconds, and deaths due to the disease have increased by a staggering 47 per cent since 2000. With the Baby Boomer population aging, those numbers are expected to explode even further in coming decades.

There are more than 5.3 million people with Alzheimer's in the United States, and more than 300,000 in Canada. Every one of those patients faces years of increasing mental incapacity followed by almost certain death, with no hope of treatment. The U.S. Alzheimer's Association has called the current situation a "crisis."

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>