Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All in the family: Focused genomic comparisons

12.01.2018

Genus-wide Aspergillus project highlights new functional genome annotation methods

Found in microbial communities around the world, Aspergillus fungi are pathogens, decomposers, and important sources of biotechnologically-important enzymes. Each Aspergillus species is known to contain more than 250 carbohydrate active enzymes (CAzymes), which break down plant cell walls and are of interest to Department of Energy (DOE) researchers working on the industrial production of sustainable alternative fuels using candidate bioenergy feedstock crops. Additionally, each fungal species is thought to contain more than 40 secondary metabolites, small molecules with the potential to act as biofuel and chemical intermediates.


Colonies of Aspergillus (clockwise from top left): A. campestris; A. ochraceoroseus; and, A.steynii. These 3 species were among those whose genomes were sequenced in the study published ahead the week of Jan. 8, 2018 in the Proceedings of the National Academy of Sciences.

Credit: Kirstine Ellen Lyhne, DTU

In a study published the week of January 8, 2018 in the Proceedings of the National Academy of Sciences, a team led by researchers at the Technical University of Denmark (DTU), the DOE Joint Genome Institute (JGI), a DOE Office of Science User Facility, and the DOE's Joint BioEnergy Institute (JBEI), led by Lawrence Berkeley National Laboratory (Berkeley Lab), report the first results of a long-term plan to sequence, annotate and analyze the genomes of 300 Aspergillus fungi. These findings are a proof of concept of novel methods to functionally annotate genomes in order to more quickly identify genes of interest.

"This is the first outcome from the large-scale sequencing of 300+ Aspergillus species," said study co-author Igor Grigoriev, head of the JGI Fungal Genomics Program. "With the JGI's strategic shift towards functional genomics, this study illustrates several new approaches for functional annotation of genes. Many approaches rely on experiments and go gene by gene through individual genomes. Using Aspergillus, we're sequencing a lot of closely-related genomes to highlight and compare the differences between genomes. A comparative analysis of closely related species with distinct metabolic profiles may result in a relatively small number of species-specific secondary metabolism genes clusters to be mapped to a relatively small number of unique metabolites."

In the study, the team sequenced and annotated 6 Aspergillus species; 4 were sequenced using the Pacific Biosciences platform, producing very high quality genome assemblies that can serve as reference strains for future comparative genomics analyses. A comparative analysis involving these genomes and other Aspergillus genomes--several of which were sequenced by the JGI--was then conducted, and allowed the team to identify biosynthetic gene clusters for secondary metabolites of interest.

"One of the things we found to be interesting here was the diversity of the species we looked at - we picked four that were distantly related," said study senior author Mikael R. Andersen, Professor at DTU. "With that diversity comes also chemical diversity, so we were able to find candidate genes for some very diverse types of compounds. This was based on a new analysis method that first author Inge Kjaerboelling developed. Moreover, we also showed how to solidify said predictions for a given compound by sequencing additional genomes of species known to produce the compound. By looking for genes found in all producer species, we can elegantly pinpoint the genes."

Study co-author Scott Baker, a fungal researcher at the Environmental Molecular Sciences Laboratory, a DOE Office of Science User Facility located at the Pacific Northwest National Laboratory, and a member of JBEI's Deconstruction Division, explained why finding candidate genes for diverse compounds matters. "The secondary metabolites are important because they represent such interesting and novel chemistry with regard to the biosynthesis of molecules that could be biofuels, biofuel precursors or bioproducts," he said. "While it is a significant effort to determine the structures of purified secondary metabolites, it is often relatively straightforward. However, connecting these molecules to their biosynthetic pathways can be quite challenging. We show that using comparative genomics can efficiently lead to reasonable predictions of gene clusters involved in biosynthetic pathways."

Grigoriev added that to date, about 30 Aspergillus genomes have been published, an additional 25 genomes are publicly available from the JGI fungal genomes portal Mycocosm (genome.jgi.doe.gov/Aspergillus), and over 100 genomes are being sequenced and analyzed.

As the JGI continues to fulfill its Strategic Plan of evolving into more of a Functional Genomics-capable User Facility, integrating genomic sequence, expression, computational and metabolic analyses, and biochemical information into a more complete picture of biology relevant to DOE missions, cross-Facility and cross-disciplinary efforts such as this one will become even more important. Characterizing the identity and roles of secondary metabolites, and the genes necessary for their generation, is critical to this effort and can provide potential tools for improving the ability to process recalcitrant biomass into precursors for biofuels and bioproducts.

###

Senior author and JGI collaborator Mikael R. Andersen spoke about the project at the 2017 DOE JGI Genomics of Energy & Environment Meeting. Watch his talk at http://bit.ly/JGI2017Andersen.

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @doe_jgi on Twitter.

EMSL, the Environmental Molecular Sciences Laboratory, is a DOE Office of Science User Facility. Located at Pacific Northwest National Laboratory in Richland, Wash., EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. Its integrated computational and experimental resources enable researchers to realize important scientific insights and create new technologies. Follow EMSL on Facebook, LinkedIn and Twitter.

DOE's Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

David Gilbert | EurekAlert!

Further reports about: Aspergillus Genome biosynthetic genomes genomic metabolites

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>