Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algae Have Land Genes

13.07.2018

The genome of the algae species Chara braunii has been decoded. It already contains the first genetic characteristics that enabled the water plants' evolutionary transition to land.

500 million years ago, the first plants living in water took to land. The genetic adaptations associated with this transition can already be recognized in the genome of Chara braunii, a species of freshwater algae. An international research team headed by Marburg biologist Stefan Rensing reports on this in the journal Cell.


The algae species Chara braunii uses electrical potentials to transmit signals over longer distances (several centimetres) in its body. It is still unknown which ion channels are involved in this.

Picture: Nora Stingl, Rob Roelfsema, Anna Alova

Rainer Hedrich and Dirk Becker from Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany, are also members of this team. "The genes of the Chara braunii alga comprises numerous evolutionary innovations that have been ascribed only to land plants so far," Professor Hedrich explains; he is the head of JMU’s Chair of Molecular Plant-Physiology and Biophysics.

The stress hormone abscisic acid (ABA) is one of these innovations. It makes land plants switch to water saving mode during dry conditions. In water plants, this function is redundant. Still these early synthesis steps for ABA are already included in the genes of Chara braunii algae according to Hedrich. The matching hormone receptors in contrast are nowhere to be found.

Specific potassium transporters missing

Chara braunii is a higher developed algae species which resembles a land plant. Among others, it features root-like structures that anchor the plant to the littoral substrate. It is not known whether the algae roots do take up any nutrients like their land-bases counterparts. The alga is permanently surrounded by water containing nutrient salts and has the ability to absorb the vital substances with virtually every cell of its body.

"Most genes that play a role in absorbing and distributing nutrients are also found in the genome of Chara braunii," says Professor Dirk Becker. In contrast, high affinity transporters for potassium as exist in roots of land plants have not yet been detected in Chara: "This could mean that potassium is more easily available in water than in soil."

Algae cells transmit electrical signals

In addition to a primitive root, the algae have a plant-like architecture with internodes and nodes bearing leaf-like structures. The internodes can be up to 20 centimetres apart and are equipped with a special feature: These giant cells emit electrical signals and forward along the body of the algae.

"For this reason, Chara braunii has been used as a model to research the electrical excitability of plant cells since the 1950s," Hedrich explains. "Because its cells fire action potentials following tactile or light stimulation the alga is also called 'green axon'." An axon is the long threadlike part of human and animal nerve cells along which electrical impulses are conducted.

Hedrich's team now wants to harness the decoded Chara braunii genome to study which ion channels in the algae are responsible for the action potentials. In land plants, glutamate receptor channels play a decisive role in the transmission of electrical signals over longer distances. However, these receptors do not exist in the genome of Chara. So scientists still have to resolve a number of questions regarding the evolutionary origins of electrical excitability in plants.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Rainer Hedrich, Julius von Sachs Institute of Biosciences, University of Würzburg, T +49 931 31-86100, hedrich@botanik.uni-wuerzburg.de

Originalpublikation:

Tomoaki Nishiyama, Hidetoshi Sakayama & al.: The Chara genome: secondary complexity and implications for plant terrestrialization, Cell 12. July 2018, DOI: https://doi.org/10.1016/j.cell.2018.06.033

Marco Bosch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Rising water temperatures could endanger the mating of many fish species
03.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>