Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nothing but Air

27.01.2012
Light but stable: novel cellulose–silica gel composite aerogels

Delicate and translucent as a puff of air, yet mechanically stable, flexible, and possessing amazing heat-insulation properties—these are the properties of a new aerogel made of cellulose and silica gel. Researchers led by Jie Cai have introduced this novel material, which consists almost completely of air, in the journal Angewandte Chemie.


Gels are familiar to us in forms like Jell-O or hair gel. A gel is a loose molecular network that holds liquids within its cavities. Unlike a sponge, it is not possible to squeeze the liquid out of a gel. An aerogel is a gel that holds air instead of a liquid. For example, aerogels made from silicon dioxide may consist of 99.98 % air-filled pores. This type of material is nearly as light as air and is translucent like solidified smoke.

In addition, it is not flammable and is a very good insulator—even at high temperatures. One prominent application for aerogels was the insulation used on space shuttles. Because of their extremely high inner surface area, aerogels are also potential supports for catalysts or pharmaceuticals. Silica-based aerogels are also nontoxic and environmentally friendly.

One drawback, however, has limited the broader application of these airy materials: silica-based aerogels are very fragile, and thus require some reinforcement. In addition to reinforcement with synthetic polymers, biocompatible materials like cellulose are also under consideration.

The researchers at Wuhan University (China) and the University of Tokyo (Japan) have now developed a special composite aerogel from cellulose and silicon dioxide. They begin by producing a cellulose gel from an alkaline urea solution. This causes the cellulose to dissolve, and to regenerate to form a nanofibrillar gel. The cellulose gel then acts as a scaffold for the silica gel prepared by a standard sol–gel process, in which a dissolved organosilicate precursor is cross-linked, gelled, and deposited onto the cellulose nanofibers. The resulting liquid-containing composite gel is then dried with supercritical carbon dioxide to make an aerogel.

The novel composite aerogel demonstrates an interesting combination of advantageous properties: mechanical stability, flexibility, very low thermal conductivity, semitransparency, and biocompatibility. If required, the cellulose part can be removed through combustion, leaving behind a silicon dioxide aerogel. The researchers are optimistic: "Our new method could be a starting point for the synthesis of many new porous materials with superior properties, because it is simple and the properties of the resulting aerogels can be varied widely."

About the Author
Dr Jie Cai is an Associate Professor in the College of Chemistry and Molecular Sciences of Wuhan University. His research interests are in biomacromolecules with particular emphasis on cellulose and chitin materials and composites.
Author: Jie Cai, Wuhan University (China), http://www.polyphys.whu.edu.cn/zhanglab-E/sub-staff.htm
Title: Cellulose–Silica Nanocomposite Aerogels by In Situ Formation of Silica in Cellulose Gel

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201105730

Jie Cai | Angewandte Chemie
Further information:
http://www.polyphys.whu.edu.cn/zhanglab-E/sub-staff.htm
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>