Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nothing but Air

27.01.2012
Light but stable: novel cellulose–silica gel composite aerogels

Delicate and translucent as a puff of air, yet mechanically stable, flexible, and possessing amazing heat-insulation properties—these are the properties of a new aerogel made of cellulose and silica gel. Researchers led by Jie Cai have introduced this novel material, which consists almost completely of air, in the journal Angewandte Chemie.


Gels are familiar to us in forms like Jell-O or hair gel. A gel is a loose molecular network that holds liquids within its cavities. Unlike a sponge, it is not possible to squeeze the liquid out of a gel. An aerogel is a gel that holds air instead of a liquid. For example, aerogels made from silicon dioxide may consist of 99.98 % air-filled pores. This type of material is nearly as light as air and is translucent like solidified smoke.

In addition, it is not flammable and is a very good insulator—even at high temperatures. One prominent application for aerogels was the insulation used on space shuttles. Because of their extremely high inner surface area, aerogels are also potential supports for catalysts or pharmaceuticals. Silica-based aerogels are also nontoxic and environmentally friendly.

One drawback, however, has limited the broader application of these airy materials: silica-based aerogels are very fragile, and thus require some reinforcement. In addition to reinforcement with synthetic polymers, biocompatible materials like cellulose are also under consideration.

The researchers at Wuhan University (China) and the University of Tokyo (Japan) have now developed a special composite aerogel from cellulose and silicon dioxide. They begin by producing a cellulose gel from an alkaline urea solution. This causes the cellulose to dissolve, and to regenerate to form a nanofibrillar gel. The cellulose gel then acts as a scaffold for the silica gel prepared by a standard sol–gel process, in which a dissolved organosilicate precursor is cross-linked, gelled, and deposited onto the cellulose nanofibers. The resulting liquid-containing composite gel is then dried with supercritical carbon dioxide to make an aerogel.

The novel composite aerogel demonstrates an interesting combination of advantageous properties: mechanical stability, flexibility, very low thermal conductivity, semitransparency, and biocompatibility. If required, the cellulose part can be removed through combustion, leaving behind a silicon dioxide aerogel. The researchers are optimistic: "Our new method could be a starting point for the synthesis of many new porous materials with superior properties, because it is simple and the properties of the resulting aerogels can be varied widely."

About the Author
Dr Jie Cai is an Associate Professor in the College of Chemistry and Molecular Sciences of Wuhan University. His research interests are in biomacromolecules with particular emphasis on cellulose and chitin materials and composites.
Author: Jie Cai, Wuhan University (China), http://www.polyphys.whu.edu.cn/zhanglab-E/sub-staff.htm
Title: Cellulose–Silica Nanocomposite Aerogels by In Situ Formation of Silica in Cellulose Gel

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201105730

Jie Cai | Angewandte Chemie
Further information:
http://www.polyphys.whu.edu.cn/zhanglab-E/sub-staff.htm
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>