Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The aging stem cell

05.07.2010
The discovery that secreted protein Ecrg4 slows neural precursor cell division during aging could point the way to treatments for age-related diseases

Stem cells and precursor cells can proliferate to repopulate damaged tissues. During aging, however, these cells lose their ability to divide—a process that is called senescence.

Now, a team of researchers led by Toru Kondo at the RIKEN Center for Developmental Biology, Kobe, has identified esophageal cancer-related gene 4 (Ecrg4) as being responsible for senescence of precursor cells in the central nervous system during aging1. This finding could explain why neurodegenerative diseases, such as Alzheimer's disease, are prevalent in elderly individuals.

Addition of serum to oligodendrocyte precursor cells (OPCs) in culture drives them toward a senescent phenotype, making them an ideal model system to study genes that induce senescence. Kondo and colleagues looked at changes in gene expression during induction of senescence in mouse OPCs and found that the expression of Ecrg4 increased the most in senescent OPCs.

When the researchers overexpressed Ecrg4 in rat OPCs, this arrested the cell cycle, and increased the proportion of cells that were labeled by a marker of cell senescence. The protein Ecrg4 seemed to act by inducing the degradation of proteins called cyclins, which drive cell cycle progression. When they reduced Ecrg4 expression, it blocked the induction of OPC senescence that is normally induced by serum.

In the culture medium of OPCs that were already senescent, Kondo and colleagues found that Ecrg4 protein was present. Administering recombinant Ecrg4 protein onto OPCs in culture also induced senescence, suggesting that Ecrg4 is a secreted protein that drives OPC senescence.

They also observed that Ecrg4 was highly expressed in the brains of old—but not young—mice, in brain regions rich with neural precursor cells and OPCs. Further, they found that the cells expressing Ecrg4 in the aging brain were not proliferating. In fact, Ecrg4-expressing cells in the aging brain seemed to be senescent, since they were co-labeled with a senescence marker. “An important next step in this research,” says Kondo, “is to make Ecrg4 knockout mice to examine the functions of Ecrg4 in vivo.”

Identifying factors that drive neural precursor cell senescence may one day lead to therapies that can kick-start their proliferation that has stalled during aging, which could help restore neuronal loss in diseases such as stroke or Parkinson's disease. “Our findings provide a new clue to investigate the mechanism of brain aging,” explains Kondo, “and may lead to the development of new methods to prevent aging and age-related diseases.”

The corresponding author for this highlight is based at the Laboratory for Cell Lineage Modulation, RIKEN Center for Developmental Biology

Journal information

Kujuro, Y., Suzuki, N. & Kondo, T. Esophageal cancer-related gene 4 is a secreted inducer of cell senescence expressed by aged CNS precursor cells. Proceedings of the National Academy of Science USA 107, 8259–8264 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6324
http://www.researchsea.com

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>