Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aging Brains Are Different in Humans and Chimpanzees

28.07.2011
Evolution of human longevity led to both a large brain and brain shrinkage say researchers

Brains shrink in humans, potentially causing a number of health problems and mental illnesses as people age, but do they shrink to the same extent in the closest living relatives to humans--the chimpanzees?

New research says no, making the extreme amount of brain shrinkage resulting from normal aging in humans unique.

Chet Sherwood, an anthropologist at The George Washington University in Washington, D.C., and a team of scientists from seven other U.S. universities put forward the question to see if comparable data on the effects of aging could be found in chimpanzees. Such data on regional brain volumes in chimpanzees was not available, until now.

The researchers--anthropologists, neuroscientists, psychologists, biologists, and veterinary professionals--used magnetic resonance imaging (MRI) to measure the space occupied by various brain structures in adult humans and chimpanzees, including the frontal lobe and the hippocampus, an area of the brain associated with short-term and long-term memory.

They found chimpanzees do not display significant loss, or atrophy, in the size of their brains and other internal structures as they age.

Instead, Sherwood and colleagues suggest that as humans evolved the ability to live longer, the result was a "high degree of brain degeneration" as people get older.

"We were most surprised that chimpanzees, who are separated from humans by only 6-8 million years of independent evolution, did not more closely resemble the human pattern of brain aging," said Sherwood. "It was already known that macaque monkeys, separated from humans by about 30 million years, do not show humanlike, widespread brain atrophy in aging."

The current issue of Proceedings of the National Academy of Sciences reports the findings. The National Science Foundation (NSF) partially funded the research.

Because humans and chimpanzees grow, develop and age on different schedules, the study compared humans from age 22 to 88 and chimpanzees from age 10 to 51. For both species, this encompassed the whole adult lifespan under natural conditions. Humans have a longer lifespan than chimpanzees. In the wild, the lifespan of chimpanzees is about 45 at the oldest. With medical care in captivity, they can live into their 60s. On the other hand, humans without access to modern medical care and who live in traditional hunter-gatherer societies can live to their mid-80s.

The researchers used MRI to measure the volume of the whole brain, total neocortical gray matter, total neocortical white matter, frontal lobe gray matter, frontal lobe white matter and the hippocampus in a cross-sectional sample of 99 chimpanzees and 87 adult humans.

"Traits that distinguish humans from other primates include enlargement of the brain and increased longevity," they write in the report "Aging of the Cerebral Cortex Differs Between Humans and Chimpanzees."

Consequently, they say, humans are unique among animals in being susceptible to certain neuropathologies, such as Alzheimer's disease, in the later stages of life. Even in the absence of disease, however, healthy aging in humans is marked by variable degrees of neural deterioration and cognitive impairment.

"This is an excellent example of research that has implications for societal benefits," said NSF Physical Anthropology Program Officer Kaye Reed. "While Dr. Sherwood and colleagues are interested in the evolutionary significance of brain differences between chimpanzees and humans, the results of this research can be used as a basis to explore degenerative brain diseases, such as Alzheimer's, in a medical context."

"This research points to the uniqueness of how severe brain aging is in humans," said Sherwood. "While there are certainly many similarities between humans and other animals in the degenerative processes that occur in the brain, our research indicates that even healthy, normal aging in humans involves more pronounced brain deterioration than in other species.

"Taken together with particular environmental and genetic risk factors, this might help to explain the fact that only humans are vulnerable to developing dementing illnesses like Alzheimer's disease in old age."

Sherwood and colleagues conclude evolution led to both a large brain and a long lifespan in humans. They point out that the benefits of these traits are much debated, but they surmise it might be related to an increased reliance on social learning of skills.

"As a result, we suggest that the high energy cost of a large brain in humans leads to more wear and tear that cannot be easily repaired because most neurons are not renewed," said Sherwood. "As a consequence, human brains become more vulnerable to degeneration towards the later stages of life."

In addition to NSF, the National Institutes of Health, the James S. McDonnell Foundation, the Mathers Foundation and a Yerkes Center Grant supported the research.

Media Contacts
Bobbie Mixon, NSF (703) 292-8070 bmixon@nsf.gov
Program Contacts
Kaye Reed, NSF (703) 292-7850 kreed@nsf.gov
Elizabeth Tran, NSF (703) 292-5338 etran@nsf.gov
Principal Investigators
Chet C. Sherwood, The George Washington University (202) 994-6346 sherwood@email.gwu.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>