Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New agents to combat the plague

11.01.2012
The plague is believed to have been eradicated in Europe. But it continues to reappear in other parts of the world, such as Madagascar, the Congo, and Peru. Since the pathogens are becoming resistant to the usual antibiotics, new agents are urgently needed. Progress has now been made in this area.

A wonderful breakthrough for scientists from the universities of Würzburg and Stony Brook (USA): they have shed light on the binding and action mechanisms of two new inhibitors that attack the plague pathogen, the bacterium Yersinia pestis. In the current issue of the journal “Structure” they present both substances, which belong to the pyridone group.


A newly developed inhibitor (magenta) from the pyridone group binds to a vital enzyme of the plague pathogen. The cofactor of the enzyme, NADH, which contributes significantly to the effect of the inhibitor, is shown in blue.
Image: Maria Hirschbeck

The new inhibitors attach themselves to the bacterial enzyme FabV and impede it in its work. This enzyme performs the final step in the production of bacterial fatty acids. If it is blocked, the plague pathogen dies. This is because without fatty acids it cannot maintain its protective shell, the cell membrane.

“But the two substances do not inhibit the enzyme well enough yet,” says Professor Caroline Kisker of the Rudolf Virchow Center at the University of Würzburg. For that reason, these new inhibitors and their interactions with the enzyme now need to be analyzed further and improved.

Steps to improve the inhibitors

Structural biologist Kisker, her doctoral student Maria Hirschbeck, and postdoctoral fellow Jochen Kuper are collaborating on this with Würzburg chemists and pharmacists Professor Christoph Sotriffer and Steffen Wagner as well as with Peter Tonge of Stony Brook University. In their laboratories, these scientists are working not with pathogens of the plague, but with the isolated enzyme. They are crystallizing it as a compound with the inhibitors, rendering it into a state in which they can analyze how the inhibitors attach themselves to the enzyme right down to the molecular level.

Christoph Sotriffer, an expert in computer modeling of molecules, and his staff then examine the crystal structures and propose changes to the inhibitors that might make these even more effective. Finally, the modified inhibitors are synthesized and re-tested: test-tube experiments reveal whether they really are further weakening this enzyme that is so vital to the plague pathogen.

“This cycle will generally have to be repeated several times until, ideally, we end up with a highly active inhibitor,” says Caroline Kisker. However, whether the inhibitor will then also be suitable as medication is far from certain. Numerous other tests will be needed to determine that.

This research is contained within the Würzburg Collaborative Research Center 630 (Recognition, Preparation, and Functional Analysis of Agents against Infectious Diseases). The German Research Foundation (DFG) is funding the work.

Progression of an infection with the plague pathogen

The pathogens of the plague tend to live in rodents, particularly rats. They can be transferred to humans through bites from infected rat fleas. After one to seven days, the sufferer develops a high fever and shivering, among other things. These symptoms are joined by painful buboes, swellings of the lymph nodes that appear like lumps on the skin. In rare cases, the lumps rupture outwards, according to the Robert Koch Institute.

As the disease progresses, the pathogens may also attack internal organs, especially the lungs. It is then common for the sufferer to cough up blood. At this stage, the pathogens can also be transmitted from human to human in droplets of coughed-up fluid. Without treatment with antibiotics, this pneumonic plague, as it is known, almost always ends in death. With bubonic plague, on the other hand, there is a 50 percent chance of survival even without treatment. Generally speaking, if the plague is detected early, it can be treated successfully with antibiotics – provided that these are still effective.

Resistant plague pathogens discovered

In 2010, scientists from the Pasteur Institute in Paris found two plague pathogen strains that no longer respond to antibiotics. Both came from Madagascar. This island south-east of Africa is a hotspot for global outbreaks of the plague: in 2010, there were 313 recognized cases of the disease here, according to statistics from the World Health Organization (WHO). The second-highest incidence of infection was found in the Congo (152), followed by Peru with 27 cases.

“Structure of the Yersinia pestis FabV Enoyl-ACP Reductase and its Interaction with two 2-Pyridone Inhibitors”, Maria W. Hirschbeck, Jochen Kuper, Hao Lu, Nina Liu, Carla Neckles, Sonam Shah, Steffen Wagner, Christoph A. Sotriffer, Peter J. Tonge, and Caroline Kisker. Structure, Vol. 20, Issue 1, 89-100, 11 January 2012, DOI 10.1016/j.str.2011.07.019

Contact

Prof. Dr. Caroline Kisker, Institute of Structural Biology, Rudolf Virchow Center / DFG Research Center for Experimental Biomedicine, T +49 (0)931 31-80381, caroline.kisker@virchow.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität W
Further information:
http://www.virchow.uni-wuerzburg.de

More articles from Life Sciences:

nachricht New mechanisms regulating neural stem cells
21.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht A landscape of mammalian development
21.02.2019 | Max-Planck-Institut für molekulare Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A Volcanic Binge And Its Frosty Hangover

21.02.2019 | Earth Sciences

Cleaning 4.0 in the meat processing industry – higher cleaning efficiency

21.02.2019 | Trade Fair News

New mechanisms regulating neural stem cells

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>