Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New agents to combat the plague

11.01.2012
The plague is believed to have been eradicated in Europe. But it continues to reappear in other parts of the world, such as Madagascar, the Congo, and Peru. Since the pathogens are becoming resistant to the usual antibiotics, new agents are urgently needed. Progress has now been made in this area.

A wonderful breakthrough for scientists from the universities of Würzburg and Stony Brook (USA): they have shed light on the binding and action mechanisms of two new inhibitors that attack the plague pathogen, the bacterium Yersinia pestis. In the current issue of the journal “Structure” they present both substances, which belong to the pyridone group.


A newly developed inhibitor (magenta) from the pyridone group binds to a vital enzyme of the plague pathogen. The cofactor of the enzyme, NADH, which contributes significantly to the effect of the inhibitor, is shown in blue.
Image: Maria Hirschbeck

The new inhibitors attach themselves to the bacterial enzyme FabV and impede it in its work. This enzyme performs the final step in the production of bacterial fatty acids. If it is blocked, the plague pathogen dies. This is because without fatty acids it cannot maintain its protective shell, the cell membrane.

“But the two substances do not inhibit the enzyme well enough yet,” says Professor Caroline Kisker of the Rudolf Virchow Center at the University of Würzburg. For that reason, these new inhibitors and their interactions with the enzyme now need to be analyzed further and improved.

Steps to improve the inhibitors

Structural biologist Kisker, her doctoral student Maria Hirschbeck, and postdoctoral fellow Jochen Kuper are collaborating on this with Würzburg chemists and pharmacists Professor Christoph Sotriffer and Steffen Wagner as well as with Peter Tonge of Stony Brook University. In their laboratories, these scientists are working not with pathogens of the plague, but with the isolated enzyme. They are crystallizing it as a compound with the inhibitors, rendering it into a state in which they can analyze how the inhibitors attach themselves to the enzyme right down to the molecular level.

Christoph Sotriffer, an expert in computer modeling of molecules, and his staff then examine the crystal structures and propose changes to the inhibitors that might make these even more effective. Finally, the modified inhibitors are synthesized and re-tested: test-tube experiments reveal whether they really are further weakening this enzyme that is so vital to the plague pathogen.

“This cycle will generally have to be repeated several times until, ideally, we end up with a highly active inhibitor,” says Caroline Kisker. However, whether the inhibitor will then also be suitable as medication is far from certain. Numerous other tests will be needed to determine that.

This research is contained within the Würzburg Collaborative Research Center 630 (Recognition, Preparation, and Functional Analysis of Agents against Infectious Diseases). The German Research Foundation (DFG) is funding the work.

Progression of an infection with the plague pathogen

The pathogens of the plague tend to live in rodents, particularly rats. They can be transferred to humans through bites from infected rat fleas. After one to seven days, the sufferer develops a high fever and shivering, among other things. These symptoms are joined by painful buboes, swellings of the lymph nodes that appear like lumps on the skin. In rare cases, the lumps rupture outwards, according to the Robert Koch Institute.

As the disease progresses, the pathogens may also attack internal organs, especially the lungs. It is then common for the sufferer to cough up blood. At this stage, the pathogens can also be transmitted from human to human in droplets of coughed-up fluid. Without treatment with antibiotics, this pneumonic plague, as it is known, almost always ends in death. With bubonic plague, on the other hand, there is a 50 percent chance of survival even without treatment. Generally speaking, if the plague is detected early, it can be treated successfully with antibiotics – provided that these are still effective.

Resistant plague pathogens discovered

In 2010, scientists from the Pasteur Institute in Paris found two plague pathogen strains that no longer respond to antibiotics. Both came from Madagascar. This island south-east of Africa is a hotspot for global outbreaks of the plague: in 2010, there were 313 recognized cases of the disease here, according to statistics from the World Health Organization (WHO). The second-highest incidence of infection was found in the Congo (152), followed by Peru with 27 cases.

“Structure of the Yersinia pestis FabV Enoyl-ACP Reductase and its Interaction with two 2-Pyridone Inhibitors”, Maria W. Hirschbeck, Jochen Kuper, Hao Lu, Nina Liu, Carla Neckles, Sonam Shah, Steffen Wagner, Christoph A. Sotriffer, Peter J. Tonge, and Caroline Kisker. Structure, Vol. 20, Issue 1, 89-100, 11 January 2012, DOI 10.1016/j.str.2011.07.019

Contact

Prof. Dr. Caroline Kisker, Institute of Structural Biology, Rudolf Virchow Center / DFG Research Center for Experimental Biomedicine, T +49 (0)931 31-80381, caroline.kisker@virchow.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität W
Further information:
http://www.virchow.uni-wuerzburg.de

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Physics: Not everything is where it seems to be

15.10.2018 | Physics and Astronomy

Microfluidic molecular exchanger helps control therapeutic cell manufacturing

15.10.2018 | Life Sciences

Link between Gut Flora and Multiple Sclerosis Discovered

15.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>