Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aerobic processes compete for nitrogen in oxygen minimum zones

06.09.2016

At the margins of oxygen minimum zones (OMZs) at ultralow oxygen concentrations, aerobic ammonium and nitrite oxidizers compete for nitrogen with anaerobic microorganisms. Thus they play an important but so far overlooked role in controlling nitrogen loss in OMZs.

An international group of researchers including Laura Bristow from the Max Planck Institute for Marine Microbiology in Bremen unveiled a surprising feature in the oceanic nitrogen cycle. The researchers were working in oxygen minimum zones (OMZs), which are hot spots in the nitrogen cycle. OMZs are areas in the ocean that contain very little or no oxygen. They are a natural phenomenon, but might be expanding due to anthropogenic influence.


Methodically, this was pioneering work: Without highly-sensitive oxygen sensorsit would not have been possible. The developers of the so-called STOX sensors supported Bristow in this study.

Laura Tiano

Bristow and colleagues discovered that tiny amounts of oxygen are sufficient to drive processes that typically occur in more oxygenated waters. These processes are ammonium oxidation and nitrite oxidation (AmOx and NitOx).

“If only a smidgen of oxygen was present, the ammonium and nitrite oxidizers instantly take advantage”, Bristow says. At the fringes of OMZs and during sporadic intrusions of oxygen, AmOx and NitOx can become very important. They are able to use the few available oxygen molecules around them and oxidize nitrogen. The microorganisms from the OMZ miss out. As a consequence, much less nitrogen is available for anaerobic processes such as anammox and denitrification.

This is important for the nitrogen cycle as, for example, anammox bacteria are very active in OMZs, where they transform nitrogen compounds to unreactive N2 gas. The ammonium and nitrite oxidizers, however, keep the nitrogen in an available form. Their activity at ultralow oxygen concentrations thus influences nitrogen cycling in the ocean, which itself has a major influence on the marine carbon cycle.

„We never had the technology before to look at AmOx and NitOx at the relevant oxygen concentrations”, says Bristow, explaining the motivation for this study. “We wanted to know how much these “aerobic” processes overlapped with “anaerobic” processes in OMZs and investigate their potential to control nitrogen loss”. Now Bristow and colleagues clearly show: AmOx und NitOx have an exceptionally high affinity for oxygen.

„Next we need to include AmOX and NitOx in our OMZ models”, Bristow looks into the future. First, the scientists want to take a closer look at the involved organisms. „I hope that more of these organisms will either be isolated, or that we can gain more data about them using molecular techniques. Both would allow us to further investigate how they function.”

Additional information:
As an essential nutrient, nitrogen plays a critical role in regulating oceanic primary productivity. Microorganisms cause nitrogen to be cycled between many different forms (ammonium, nitrate, nitrite, N2 gas). Some forms of nitrogen are available to organisms, others aren’t and a number of these transformations can only occur when oxygen is present. It’s a complex puzzle, not all parts of which are understood to date.

Original publication
Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Laura A. Bristow, Tage Dalsgaard, Laura Tiano, Daniel B. Mills, Anthony Bertagnolli, Jody J. Wright, 
Steven J. Hallam, Osvaldo Ulloa, Donald E. Canfield, Niels Peter Revsbech and Bo Thamdrup. PNAS. 


Participating institutes
Max Planck Institute for Marine Microbiology, Bremen, Germany
University of Southern Denmark, Odense, Denmark
Aarhus University, Aarhus, Denmark
Universidad de Concepción, Casilla, Concepción, Chile
University of British Columbia, Vancouver, Canada

Weitere Informationen:

http://www.mpi-bremen.de

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>