Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ADP-ribosylation on the right track

26.04.2018

Scientists from the Max Planck Institute for Biology of Ageing in Cologne discover serine as the hitherto unknown amino acid for protein modification, changing a 50-year-old paradigm.

Scientific achievements enlarge our knowledge about how things work and eventually enable us to understand details and even to predict the unknown.


Chemical structure of the amino acid serine, which is part of almost all proteins and the main target for ADP ribosylation. In the background a membrane with stained proteins.

©Max Planck Institute for Biology of Ageing


Group leader Ivan Matić (left) with first author Orsolya Leidecker.

©Max Planck Institute for Biology of Ageing

But sometimes the assumptions we make based on what we have already seen limit our perception and bias our approach to the new. This is exactly what happened with ADP ribosylation (ADPr), a particular protein modification that appears in every cell and is essential for almost all biological processes.

When a protein gets ADP ribosylated, it gets labeled with additional information. For example, an ADPr signal can be placed on a protein for the recruitment of vital factors to repair damaged DNA, the genetic information in cells. Like an alarm in case of an emergency, it marks the place where help is needed.

For half a century it was believed that ADPr modifies particular sites on proteins: the amino acids glutamate, aspartate, arginine and lysine. But the functional characterization of these identified sites showed very slow progress.

“We know the reason for this now: most of the sites were mis-localised” says Orsolya Leidecker, a scientist in the group of Dr. Ivan Matić from the Max Planck Institute for Biology of Ageing. Now the scientists have finally identified the amino acid serine as the major site of ADPr by using a new technique. Due to its chemical structure, serine was never really considered as a target, which makes this finding all the more exciting.

“It’s a little like the discovery of the structure of the DNA”, explains group leader Dr. Ivan Matić. “People had known for decades that there must be genetic information stored somewhere but didn’t know where or how. The field of ADPr modification was similarly slow to develop for lack of precise knowledge about which amino acid ADPr attaches to. Now we finally know exactly where this information sits.”

Additionally, the Matić group and their collaborators in Oxford have developed a simple method for validating serine ADP-ribosylated sites in cells, which enables any scientist to examine ADPr on their protein of interest. “Anybody in any lab can perform the experiment and investigate if the modification of their protein is on serine” says Leidecker, who contributed to the main part of the work.

Actually, the identification of the correct position of ADPr is only the beginning. Researchers can now investigate the impact of ADPr on proteins, understand their functionality and develop strategies to use this modification as a target for drug development. Targeting processes regulated by ADPr is already a very promising strategy in treatment of cancer and acute cardiovascular conditions.

The research was performed in collaboration with CECAD.

Dr. Annegret Burkert | Max-Planck-Institut für Biologie des Alterns
Further information:
http://www.age.mpg.de

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>