Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adipose analysis on microfluidic chips

14.07.2016

Platform works with minute quantities of liquid to grow cells and study their development

A Freiburg-based research group has developed a microfluidic chip where more than one hundred apidose-derived adult stem cell cultures can grow and divide. In the human body, adipose tissue acts as a primary energy store.


Caption: The microfluidic chip (background) and adipose cells (close-up section view).

Source: Matthias Meier

Adult stem cells have the task of maintaining and regenerating this process. The researchers used the new lab-on-a-chip to study how adult stem cells in adipose tissue develop into mature fat cells, conducting their investigations outside the body. Previous experiments have enabled them to decode a signalling pathway involved in adipose cell maturation and to show that calories in the nutrient medium influence this process.

The team has published the results of its research in the journal Proceedings of the National Academy of Sciences (PNAS). “Going forward, we want to investigate the environmental factors – particularly the nutrient conditions – that cause different adipose cell types to grow,” explains biophysicist Dr. Matthias Meier. “This will enable us to develop new approaches to combating obesity and diabetes.”

In contrast to embryonic stem cells, when adult stem cells divide, their offspring are only able to develop at the same site and in certain tissue types. Factors such as insulin and blood sugar levels also influence whether or not adult stem cells in adipose tissue will develop into mature adipose cell. Aberrations in this maturation process can lead to diabetes or obesity. The multitude of factors operating here make it very complicated, however, for scientists to investigate this process outside the body.

In order to overcome this problem, the Freiburg-based research group has developed a microfluidic chip that works with minute volumes of liquid: The platform uses microchannels to feed cell cultures with nutrients during their three-week growth period. A special feature of the set-up is an automatic protein analysis program integrated into the chip, which decodes signalling pathways during cell growth.

The new technology allows the researchers to vary the external cell factors such that the micro-environment on the chip resembles conditions within the body as closely as possible. This enabled adipose-derived adult stem cells to be successfully converted into mature fat cells within the experiments, and the corresponding signalling pathway mTORC1 was also decoded. “By increasing the calorie content in the nutrient medium, we were able to show that fat is stored more rapidly during maturation,” states Meier.

“However, it remains unclear whether adjusting the calorie levels in this way leads to an increased rate of adipose cell formation.” To answer this question, the research team now wants to systematically use the chip technology to study the association between human eating habits and the formation of fat cells.

Eight researchers were involved in the study: Matthias Blazek, Matthias Meier, Indranil Mitra, Alina Platen, Nils Schneider, Xuanye Wu and Prof. Dr. Roland Zengerle conduct research at the Department of Microsystems Engineering (IMTEK) and belong to the BIOSS Centre for Biological Signalling Studies Cluster of Excellence at the University of Freiburg. Prof. Dr. Roland Schüle is the Scientific Director of the Centre for Clinical Research at Freiburg University Hospital.

Original publication:
Xuanye Wu, Nils Schneider, Alina Platen, Indranil Mitra, Matthias Blazek, Roland Zengerle, Roland Schüle and Matthias Meier (2016). In situ characterization of the mTORC1 during adipogenesis of human adult stem cells on chip. PNAS Early Edition. DOI: 10.1073/pnas.1601207113

Contact:
Dr. Matthias Meier
Institut für Mikrosystemtechnik
Albert-Ludwigs-Universität Freiburg
Phone: +49 (0)761 / 203 – 73241
E-Mail: matthias.meier@imtek.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-07-13.104-en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht Detailed insight into stressed cells
05.12.2019 | Goethe-Universität Frankfurt am Main

nachricht State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing
05.12.2019 | Universität Ulm

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>