Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Actin cytoskeleton remodeling protects tumor cells against immune attack

24.10.2018

Cancer cells have evolved multiple escape strategies to circumvent the body’s immune defenses such as the attack by Natural Killer (NK) cells which normally swiftly kill abnormal cells by releasing cytotoxic products. While studying breast cancer cell lines, Dr. Clément Thomas’ research team at the Luxembourg Institute of Health (LIH) uncovered a previously unknown mechanism that leaves tumor cells unharmed by NK cell-mediated cytotoxicity. The scientists published their findings in the August issue of the acclaimed scientific journal “Cancer Research”.

The Laboratory of Experimental Cancer Research at LIH’s Department of Oncology conducts clinically oriented research aiming at understanding how cancer cells evolve progressively and acquire aggressive features. Within this laboratory, the “Cytoskeleton and Cancer Progression” research group, led by Dr. Clément Thomas, focuses in particular on the actin cytoskeleton and related signaling pathways in the context of breast cancer.


Confocal microscopy image. Accumulation of actin filaments (in green) at the immunological synapse of a resistant cancer cell in contact with an NK cell (in red). Cell nuclei are shown in blue.

LIH

The actin cytoskeleton is essential for maintaining the shape of cells and enabling motility, and plays critical roles in tumor cell invasion and metastasis. Until now it remained unclear whether the cytoskeleton also contributes to immune evasion, rendering cancer cells resistant to attacks by the immune system.

Actin mounts up in resistant tumor cells

Cancer cells are able to develop resistance to immune attack by escaping from NK-mediated cell death. Tumor immune escape is a major hurdle limiting the efficacy of current immunotherapies. In the present research work, Dr. Antoun Al Absi, Dr. Thomas and co-workers investigated whether the actin cytoskeleton plays a role in immune evasion. ‘When NK cells or cytotoxic T cells get in contact with target cells, a so-called immunological synapse is formed’, explains Dr. Thomas.

‘This contact interface allows NK cells to focus and release cytotoxic granules toward the target cells leading to their killing. It is well known that rearrangement of the cytoskeleton inside NK cells is necessary for the formation of the immunological synapse and granule release to the target cells.

However, the organization of actin filaments in target cells remains poorly explored. This gave us impulse to investigate what happens with the cytoskeleton of cancer cells in contact with NK cells.’

The scientists thus took a closer look at possible alterations of the actin cytoskeleton in breast cancer cells comparing NK-mediated cytotoxicity resistant and susceptible cell lines. They revealed that all the cell lines they investigated contain two subpopulations: one showing a very prominent accumulation of actin filaments at the level of the immunological synapse, and one with no such accumulation.

‘When using high-throughput imaging flow cytometry we observed that actin massively concentrates at the immunological synapse in tumor cells resistant to NK cytotoxicity, indicating a causal link between this actin response and resistance,’ states Dr. Al Absi who conducted the major part of the experimental work.

Actin(g) as a protection

To be sure that the actin response is truly associated to the resistance phenotype, the researchers conducted experiments in which genes were silenced to impair actin polymerization. This abolished the actin response and made previously resistant cancer cells remarkably more susceptible to NK cell attack. Thus the actin response is linked to the protection of cancer cells against the attack of NK cells.

The team next analyzed the effects of the actin rearrangement in cancer cells at the molecular level. ‘We observed a difference in the density of ligands on the surface of cancer cells’. On cells with an actin response, a significant increase in immune-inhibitory ligands such as HLA-A, -B, -C and the immune checkpoint protein PD-L1 was found at the contact site with NK cells.

On top of that, we detected that a lower amount of the cytotoxic protein granzyme B reaches the resistant target cell,’ explains Dr. Al Absi. The researchers thus concluded that the actin response protects cancer cells from lysis by limiting the accumulation of granzyme B. They are currently evaluating the hypothesis that the actin response actually drives the local recruitment of immune-inhibitory ligands to alter the cytotoxic function of immune cells.

Finally, to validate their results, Dr. Al Absi and co-workers also monitored the actin response using primary NK cells isolated from donors to exclude that the phenomenon is solely observable with the NK cell line initially used for the study. Indeed, the actin response and its protective effects were also observed in this context.

The present research work revealed a new fascinating mechanism by which cancer cells escape from the immune response and may pave the way for new cancer treatment options. ‘The actin response that drives breast cancer cell resistance to NK-cell mediated cell lysis presents an interesting therapeutic target,’ stresses Dr. Thomas.

‘We now need to investigate the molecular pathways that underlie the actin response and search for components that could be directly targeted by drugs. We hope that we will find a way to sensitize resistant cancer cells to NK cell-mediated cytotoxicity as this would considerably improve the efficacy of NK cell-based immunotherapy. Moreover, we are now evaluating the possibility that the actin response also provides resistance against cytotoxic T cells.’

Research funding and collaborations

This research work is a major part of the PhD thesis of Dr. Antoun Al Absi who graduated in July 2018 and was supported by an AFR PhD grant from Luxembourg National Research Fund (FNR). The research team is supported by further research grants from the FNR, F.R.S.-FNRS Télévie and the Luxembourg Cancer Foundation “Fondation Cancer”.

The project was mainly carried out at the Laboratory of Experimental Cancer Research at LIH’s Department of Oncology under the lead of Dr. Clément Thomas and included a collaboration with the National Cytometry Platform at LIH’s Department of Infection and Immunity and the INSERM unit “Immunologie Intégrative des Tumeurs” at the Gustave Roussy Institute in Villejuif, France.

Wissenschaftliche Ansprechpartner:

Dr. Clément Thomas - Principal Investigator
Cytoskeleton and Cancer Progression research group
Laboratory of Experimental Cancer Research
Department of Oncology
Luxembourg Institute of Health
E-mail: clement.thomas@lih.lu

Originalpublikation:

http://cancerres.aacrjournals.org/content/early/2018/08/08/0008-5472.CAN-18-0441...

Dr Malou Fraiture | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New sensor detects rare metals used in smartphones
24.04.2019 | Penn State

nachricht Controlling instabilities gives closer look at chemistry from hypersonic vehicles
24.04.2019 | University of Illinois College of Engineering

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>